dc.creatorMacedo J.A.
dc.creatorFazani Cavallieri A.L.
dc.creatorLopes da Cunha R.
dc.creatorSato H.H.
dc.date2010
dc.date2015-06-26T12:36:41Z
dc.date2015-11-26T15:26:59Z
dc.date2015-06-26T12:36:41Z
dc.date2015-11-26T15:26:59Z
dc.date.accessioned2018-03-28T22:35:38Z
dc.date.available2018-03-28T22:35:38Z
dc.identifier
dc.identifierInternational Dairy Journal. , v. 20, n. 10, p. 673 - 679, 2010.
dc.identifier9586946
dc.identifier10.1016/j.idairyj.2010.03.014
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-77955509124&partnerID=40&md5=94977e96038b06b251fb1fb4a65e8ec7
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/91113
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/91113
dc.identifier2-s2.0-77955509124
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1261234
dc.descriptionThe influence of the transglutaminase (TG) from a newly isolated Brazilian Streptomyces sp. CBMAI 837 and sodium caseinate concentration (4% and 8%, w/w) on acid-gel properties was studied. Standard gels with and without commercial transglutaminase samples were tested in parallel. The mechanical properties of the samples (stress and strain at rupture and elasticity modulus) were evaluated using uniaxial compression measurements. Texture parameters showed that the commercial TG gels had greater values of elasticity modulus, while addition of the Streptomyces sp. CBMAI 837 TG to the gel led to the formation of less elastic, but more deformable gels. The electrophoresis results showed that the commercial TG enzyme in this system promoted higher molecular mass protein polymers than the enzyme from Streptomyces sp. CBMAI 837. Microscopy and water-holding capacity (WHC) observations showed that all the gel characteristics could be associated with specific interactions promoted by each TG tested. © 2010 Elsevier Ltd.
dc.description20
dc.description10
dc.description673
dc.description679
dc.descriptionAndo, H., Adachi, M., Umeda, K., Matsuura, A., Nonaka, M., Uchio, R., Purification and characteristics of a novel transglutaminase derived from microorganism (1989) Agriculture and Biological Chemistry, 53, pp. 2613-2617
dc.descriptionBarbut, S., Determining water and fat holding (1996) Methods of testing protein functionality, pp. 187-225. , Chapman & Hall, London, UK, G.M. Hall (Ed.)
dc.descriptionBasch, J.J., Douglas, F.W.J.R., Procino, L.G., Holsinger, V.H., Farrell, H.M., Quantitation of caseins and whey proteins of processed milks and whey protein concentrates: application of gel electrophoresis and comparison with Harland-Ashworth procedure (1985) Journal of Dairy Science, 68, pp. 23-31
dc.descriptionBelyakova, L.E., Antipova, A.S., Semenova, M.G., Dickinson, E., Merino, L.M., Tsapkina, E.N., Effect of sucrose on molecular and interaction parameters of sodium caseinate in aqueous solution: relationship to protein gelation (2003) Colloids and Surfaces B: Biointerfaces, 31, pp. 31-46
dc.descriptionBraga, A.L.M., Cunha, R.L., The effect of sucrose on unfrozen water and syneresis of acidified sodium caseinate-xanthan gels (2005) International Journal of Biological Macromolecule, 36, pp. 33-38
dc.descriptionBraga, A.L.M., Menossi, M., Cunha, R.L., The effect of the glucono-deltalactone/caseinate ratio on sodium caseinate gelation (2006) International Dairy Journal, 16, pp. 389-398
dc.descriptionCavallieri, A.L.F., Costa-Netto, A.P., Menossi, M., Cunha, R.L., Whey protein interactions in acidic cold-set gels at different pH values (2007) Dairy Science and Technology, 87, pp. 535-554
dc.descriptionChristensen, B.M., Sörensen, E.S., Höjrup, P., Petersen, T.E., Rasmussen, L.K.J., Localization of potential transglutaminase cross-linking sites in bovine caseins (1996) Journal of Agriculture and Food Chemistry, 44, pp. 1943-1947
dc.descriptionFolk, J.E., Cole, P.W., Mechanism of action of pig liver transglutaminase (1966) Journal of Biological Chemistry, 241, pp. 5518-5525
dc.descriptionIkura, K., Kometani, T., Yoshikawa, M., Sasaki, R., Chiba, H., Use of transglutaminase. Reversible blocking of amino groups in substrate proteins for a high yield of specific products (1980) Agriculture, Biology and Chemistry, 44, pp. 1567-1573
dc.descriptionIkura, K., Sasaki, R., Motoki, M., Use of transglutaminase in quality-improvement and processing of food proteins (1992) Agriculture and Food Chemistry, 2, pp. 389-407. , Comments
dc.descriptionKalab, M., Practical aspects of electron-microscopy in dairy research (1993) Food Structure, 12, pp. 95-114
dc.descriptionKohyama, K., Nishinari, K., Rheological studies on gelation process of soybean 7S and 11S proteins in the presence of glucono-delta-lactone (1993) Journal of Agricultural and Food Chemistry, 41, pp. 8-14
dc.descriptionLaemmli, U., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685
dc.descriptionLorenzen, P.C., Schlimme, E., Roos, N., Crosslinking of sodium caseinate by a microbial transglutaminase (1998) Nahrung, 42, pp. 151-154
dc.descriptionMacedo, J.A., Sette, L.D., Sato, H.H., Optimization studies for the production of microbial transglutaminase from a newly isolated strain of Streptomyces sp. (2008) Food Science and Biotechnology, 17, pp. 904-911
dc.descriptionMacedo, J.A., Sette, L.D., Sato, H.H., A comparative biochemical characterization of microbial transglutaminases: commercial vs. a newly isolated enzyme from Streptomyces sp (2010) Food Bioprocess Technology, 3, pp. 308-314
dc.descriptionMyllarinen, P., Buchert, J., Autio, K., Effect of transglutaminase on rheological properties and microstructure of chemically acidified sodium caseinate gels (2007) International Dairy Journal, 17, pp. 800-807
dc.descriptionPartanen, R., Autio, K., Myllarinen, P., Lille, M., Buchert, J., Forssell, P., Effect of transglutaminase on structure and syneresis of neutral and acidic sodium caseinate gels (2008) International Dairy Journal, 18, pp. 414-421
dc.descriptionSoares, L.H.B., Assmann, F., Ayub, M.A.Z., Purification and properties of a transglutaminase produced by a Bacillus circulans strain isolated from the Amazon environment (2003) Biotechnology and Applied Biochemistry, 37, pp. 295-299
dc.descriptionSteffe, J.F., (1996) Rheological methods in food process engineering, , Freeman Press, East Lansing, USA
dc.descriptionSuzuki, S., Izawa, Y., Kobayashi, K., Eto, Y., Yamanaka, S., Kubota, K., Purification and characterization of novel transglutaminase from Bacillus subtilis spores (2000) Bioscience, Biotechnology and Biochemistry, 64, pp. 2344-2351
dc.descriptionTakeuchi, K.P., Cunha, R., Influence of ageing time on sodium caseinate gelation induced by glucono-δ-lactone at different temperatures (2008) Dairy Science and Technology, 88, pp. 667-681
dc.descriptionTraore, F., Meunier, J.-C., (1991) Journal of Agriculture and Food Chemistry, 39, pp. 1892-1896
dc.descriptionWalstra, P., On the stability of casein micelles (1990) Journal of Dairy Science, 73, pp. 1965-1979
dc.descriptionZhu, Y., Rinzema, A., Tramper, J., Bol, J., Microbial transglutaminase - a review of its production and application in food processing (1995) Applied Microbiology and Biotechnology, 44, pp. 277-282
dc.languageen
dc.publisher
dc.relationInternational Dairy Journal
dc.rightsfechado
dc.sourceScopus
dc.titleThe Effect Of Transglutaminase From Streptomyces Sp. Cbmai 837 On The Gelation Of Acidified Sodium Caseinate
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución