dc.creatorCosta M.R.
dc.creatorElias-Argote X.E.
dc.creatorJimenez-Flores R.
dc.creatorGigante M.L.
dc.date2010
dc.date2015-06-26T12:36:41Z
dc.date2015-11-26T15:26:57Z
dc.date2015-06-26T12:36:41Z
dc.date2015-11-26T15:26:57Z
dc.date.accessioned2018-03-28T22:35:36Z
dc.date.available2018-03-28T22:35:36Z
dc.identifier
dc.identifierInternational Dairy Journal. , v. 20, n. 9, p. 598 - 602, 2010.
dc.identifier9586946
dc.identifier10.1016/j.idairyj.2010.03.006
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-77954816694&partnerID=40&md5=253bd12676ecfda35cf73cbf1367e808
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/91112
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/91112
dc.identifier2-s2.0-77954816694
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1261226
dc.descriptionWhey buttermilk, a by-product from whey cream processing to butter, is rich in milk fat globule membrane (MFGM) constituents, which have technological and potential health properties. The objective of this work was to produce a dairy ingredient enriched in MFGM material, especially phospholipids, from whey buttermilk. Whey buttermilk was concentrated by ultrafiltration (10×) and subsequently diafiltered (5×) (10 kDa molecular mass cutoff membrane) at 25 °C and the final retentate was spray-dried. The whey buttermilk powder was submitted to supercritical extraction (350 bar, 50 °C) using carbon dioxide. The membrane filtration removed most of the lactose and ash from the whey buttermilk, and the supercritical extraction extracted exclusively non-polar lipids. The final powder contained 73% protein and 21% lipids, of which 61% were phospholipids. This ingredient, a phospholipids-rich dairy powder, could be used as an emulsifier in different food systems. © 2010 Elsevier Ltd.
dc.description20
dc.description9
dc.description598
dc.description602
dc.descriptionAraújo, M.E., Machado, N.T., França, L.F., Meireles, M.A.A., Supercritical extraction of pupunha (Guilielma speciosa) oil in a fixed bed using carbon dioxide (2000) Brazilian Journal of Chemical Engineering, 17, pp. 297-306
dc.description(2003) Official methods of analysis, , Association of Official Analytical Chemists, AOAC, Washington, DC, USA
dc.descriptionAstaire, J.C., (2002), Microfiltration and supercritical fluid extraction of buttermilk to concentrate biological lipid messengers. PhD Thesis, California Polytechnic State University, Faculty of the Agricultural Sciences Department, USAAstaire, J.C., Ward, R., German, J.B., Jiménez-Flores, R., Concentration of polar MFGM lipids from buttermilk by microfiltration and supercritical fluid extraction (2003) Journal of Dairy Science, 86, pp. 2297-2307
dc.descriptionBritten, M., Lamothe, S., Robitaille, G., Effect of cream treatment on phospholipids and protein recovery in butter-making process (2008) International Journal of Food Science and Technology, 43, pp. 651-657
dc.descriptionCoelho, L.A.F., Oliveira, J.V., Pinto, J.C., Modelagem e simulação do processo de extração supercrítica do óleo essencial de alecrim (1997) Ciência e Tecnologia de Alimentos, 17, pp. 446-448
dc.descriptionCorredig, M., Dalgleish, D.G., Isolates from industrial buttermilk: emulsifying properties of material derived from the milk fat globules membrane (1997) Journal of Agriculture and Food Chemistry, 45, pp. 4595-4600
dc.descriptionCorredig, M., Roesch, R.R., Dalgleish, D.G., Production of a novel ingredient from buttermilk (2003) Journal of Dairy Science, 86, pp. 2744-2750
dc.descriptionDanthine, S., Blecker, C., Paquot, M., Innocente, N., Deroanne, C., Progress in milk fat globule membrane research: a review (2000) Lait, 80, pp. 209-222
dc.descriptionDeeth, H.C., The role of phospholipids in the stability of milk fat globules (1997) The Australian Journal of Dairy Technology, 52, pp. 44-46
dc.descriptionDewettinck, K., Rombaut, R., Thienpont, N., Le, T.T., Messens, K., Van Camp, J., Nutritional and technological aspects of milk fat globule membrane material (2008) International Dairy Journal, 18, pp. 436-457
dc.descriptionFong, B.Y., Norris, C.S., Macgibbon, A.K.H., Protein and lipid composition of bovine milk-fat-globule membrane (2007) International Dairy Journal, 17, pp. 275-288
dc.descriptionHaug, A., Høstmark, A.T., Harstad, O.M., Bovine milk in human nutrition - a review (2007) Lipids in Health and Disease, 6, pp. 25-40
dc.descriptionKilara, A., Panyam, D., Peptides from milk proteins and their properties (2003) Critical Reviews in Food Science and Nutrition, 43, pp. 607-633
dc.descriptionKisel, M.A., Kulik, L.N., Tsybovsky, I.S., Vlasov, A.P., Vorob'yov, M.S., Kholodova, E.A., Liposomes with phosphatidylethanol as a carrier for oral delivery of insulin: studies in the rat (2001) International Journal of Pharmaceutics, 216, pp. 105-114
dc.descriptionLaemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685
dc.descriptionLameira, C.P., Coelho, G.L.V., Mothé, C.G., Extração de lipídeos da amêndoa de castanha de caju com CO2 supercrítico (1997) Ciência e Tecnologia de Alimentos, 17, pp. 405-407
dc.descriptionMorin, P., Britten, M., Jiménez-Flores, R., Pouliot, Y., Microfiltration of buttermilk and washed cream buttermilk for concentration of milk fat globule membrane components (2007) Journal of Dairy Science, 90, pp. 2132-2140
dc.descriptionMorin, P., Jiménez-Flores, R., Pouliot, Y., Effect of temperature and pore size on the fractionation of fresh and reconstituted buttermilk by microfiltration (2004) Journal of Dairy Science, 87, pp. 267-273
dc.descriptionMorin, P., Pouliot, Y., Jiménez-Flores, R., A comparative study of the fractionation of regular buttermilk and whey buttermilk by microfiltration (2006) Journal of Food Engineering, 77, pp. 521-528
dc.descriptionNobrega, L.P., Monteiro, A.R., Meireles, M.A.A., Marques, M.A.O.M., Comparison of ginger (Zingiber officiale roscoe) oleoresin obtained with ethanol and isopropanol with that obtained with pressurized CO2 (1997) Ciência e Tecnologia de Alimentos, 17, pp. 408-412
dc.descriptionNoh, S.K., Koo, S.L., Milk sphingomyelin is more effective than egg sphingomyelin in inhibiting intestinal absorption of cholesterol and fat in rats (2004) Journal of Nutrition, 134, pp. 2611-2616
dc.descriptionRiccio, P., The proteins of the milk fat globule membrane in the balance (2004) Trends in Food Science and Technology, 15, pp. 458-461
dc.descriptionRoesch, R.R., Rincon, A., Corredig, M., Emulsifying properties of fractions prepared from commercial buttermilk by microfiltration (2004) Journal of Dairy Science, 87, pp. 4080-4087
dc.descriptionRombaut, R., Camp, J.V., Dewettinck, K., Phospho- and sphingolipid distribution during processing of milk, butter and whey (2006) International Journal of Food Science and Technology, 41, pp. 435-443
dc.descriptionRombaut, R., Dejonckheere, V., Dewettinck, K., Filtration of milk fat globule membrane fragments from acid buttermilk cheese whey (2007) Journal of Dairy Science, 90, pp. 1662-1673
dc.descriptionSachdeva, S., Buchheim, W., Recovery of phospholipids from buttermilk using membrane processing (1997) Kieler Milchwirtschaftliche Forschungsberichte, 49, pp. 47-68
dc.descriptionSilva, C.F., Mendes, M.F., Pessoa, F.L.P., Queiroz, E.M., Supercritical carbon dioxide extraction of macadamia (Macadamia integrifolia) nut oil: experiments and modeling (2008) Brazilian Journal of Chemical Engineering, 25, pp. 175-181
dc.descriptionSingh, H., Tokley, R.P., Effects of preheat treatments and buttermilk addition on the seasonal variations in the heat stability of recombined evaporated milk and reconstituted concentrated milk (1990) Australian Journal of Dairy Technology, 45, pp. 10-16
dc.descriptionSodini, I., Morin, P., Olabi, A., Jiménez-Flores, R., Compositional and functional properties of buttermilk: a comparison between sweet, sour, and whey buttermilk (2006) Journal of Dairy Science, 89, pp. 525-536
dc.descriptionSpitsberg, V.L., Bovine milk fat globule membrane as a potential nutraceutical (2005) Journal of Dairy Science, 88, pp. 2289-2294
dc.descriptionSpitsberg, V.L., Gorewit, R.C., In vitro phosphorylated bovine milk fat globule membrane proteins (1997) Journal of Nutritional Biochemistry, 8, pp. 181-189
dc.description(2000) STATISTICA for Windows [Computer program manual], , StatSoftInc, StatSoft, Inc, Tulsa, OK, USA
dc.descriptionThompson, A.K., Singh, H., Preparation of liposomes from milk fat globule membrane phospholipids using a microfluidizer (2006) Journal of Dairy Science, 89, pp. 410-419
dc.descriptionTurcot, S., Turgeon, S.L., St.Gelais, D., Effect of buttermilk phospholipids concentrations in cheese milk on production and composition of low fat Cheddar cheese (2001) Lait, 81, pp. 429-442
dc.descriptionWang, X., Hirmo, S., Millen, R., Wadstrom, T., Inhibition of Helicobacter pylori infection by bovine milk glycoconjugates in a BALB/cA mouse model (2001) FEMS Immunology and Medical Microbiology, 20, pp. 275-281
dc.descriptionWiking, L., Nielsen, J.H., Bavius, A.K., Edvardsson, A., Svennersten-Sjaunja, K., Impact of milking frequencies on the level of free fatty acids in milk, fat globule size, and fatty acid composition (2006) Journal of Dairy Science, 89, pp. 1004-1009
dc.descriptionYee, J.L., Walker, J., Khalil, H., Jiménez-Flores, R., Effect of variety and maturation of cheese on supercritical fluid extraction efficiency (2008) Journal of Agricultural and Food Chemistry, 56, pp. 5153-5157
dc.languageen
dc.publisher
dc.relationInternational Dairy Journal
dc.rightsfechado
dc.sourceScopus
dc.titleUse Of Ultrafiltration And Supercritical Fluid Extraction To Obtain A Whey Buttermilk Powder Enriched In Milk Fat Globule Membrane Phospholipids
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución