dc.creatorPereira Lopes F.R.
dc.creatorFrattini F.
dc.creatorMarques S.A.
dc.creatorAlmeida F.M.D.
dc.creatorde Moura Campos L.C.
dc.creatorLangone F.
dc.creatorLora S.
dc.creatorBorojevic R.
dc.creatorMartinez A.M.B.
dc.date2010
dc.date2015-06-26T12:36:42Z
dc.date2015-11-26T15:26:50Z
dc.date2015-06-26T12:36:42Z
dc.date2015-11-26T15:26:50Z
dc.date.accessioned2018-03-28T22:35:30Z
dc.date.available2018-03-28T22:35:30Z
dc.identifier
dc.identifierMicron. , v. 41, n. 7, p. 783 - 790, 2010.
dc.identifier9684328
dc.identifier10.1016/j.micron.2010.05.010
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-77955919816&partnerID=40&md5=a56bb738d1b3416eb63c85be599b5a5d
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/91118
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/91118
dc.identifier2-s2.0-77955919816
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1261202
dc.descriptionPeripheral nerves possess the capacity of self-regeneration after traumatic injury. Nevertheless, the functional outcome after peripheral-nerve regeneration is often poor, especially if the nerve injuries occur far from their targets. Aiming to optimize axon regeneration, we grafted bone-marrow-derived cells (BMDCs) into a collagen-tube nerve guide after transection of the mouse sciatic nerve. The control group received only the culture medium. Motor function was tested at 2, 4, and 6 weeks after surgery, using the sciatic functional index (SFI), and showed that functional recovery was significantly improved in animals that received the cell grafts. After 6 weeks, the mice were anesthetized, perfused transcardially, and the sciatic nerves were dissected and processed for transmission electron microscopy and light microscopy. The proximal and distal segments of the nerves were compared, to address the question of improvement in growth rate; the results revealed a maintenance and increase of nerve regeneration for both myelinated and non-myelinated fibers in distal segments of the experimental group. Also, quantitative analysis of the distal region of the regenerating nerves showed that the numbers of myelinated fibers, Schwann cells (SCs) and g-ratio were significantly increased in the experimental group compared to the control group. The transdifferentiation of BMDCs into Schwann cells was confirmed by double labeling with S100/and Hoechst staining. Our data suggest that BMDCs transplanted into a nerve guide can differentiate into SCs, and improve the growth rate of nerve fibers and motor function in a transected sciatic-nerve model. © 2010 Elsevier Ltd.
dc.description41
dc.description7
dc.description783
dc.description790
dc.descriptionAebischer, P., Salessiots, J.M., Winn, S.R., Basic fibroblast growth factor released from synthetic guidance channels facilitates regeneration across long nerve gaps (1989) J. Neurosci. Res., 23, pp. 282-289
dc.descriptionAmado, S., Simões, M.J., Armada da Silva, P.A., Luís, A.L., Shirosaki, Y., Lopes, M.A., Santos, J.D., Geuna, S., Use of hybrid chitosan membranes and N1E-115 cells for promoting nerve regeneration in an axonotmesis rat model (2008) Biomaterials, 29, pp. 4409-4419
dc.descriptionAnton, E.S., Weskamp, G., Reichardt, L.F., Matthew, W.D., Nerve growth factor and its low-affinity receptor promote Schwann cell migration (1994) Proc. Natl. Acad. Sci. U.S.A., 29, pp. 2795-2799
dc.descriptionBalduíno, A., Hurtado, S.P., Frazão, P., Takiya, C.M., Alves, L.M., Nasciutti, L.E., El-Cheikh, M.C., Borojevic, R., Bone marrow subendosteal microenvironment harbours functionally distinct haemosupportive stromal cell populations (2005) Cell Tissue Res., 319, pp. 255-266
dc.descriptionBaptista, A.F., Gomes, J.R., Oliveira, J.T., Santos, S.M., Vannier-Santos, M.A., Martinez, A.M., High- and low-frequency transcutaneous electrical nerve stimulation delay sciatic nerve regeneration after crush lesion in the mouse (2008) J. Peripher. Nerv. Syst., 13, pp. 71-80
dc.descriptionBianco, P., Riminucci, M., Gronthos, S., Robey, P.G., Bone marrow stromal cells: nature, biology and potential applications (2001) Stem Cells, 19, pp. 180-192
dc.descriptionBossolasco, P., Cova, L., Calzarossa, C., Rimoldi, S.G., Borsotti, C., Deliliers, G.L., Silani, V., Polli, E., Neuro-glial differentiation of human bone marrow stem cells in vitro (2005) Exp. Neurol., 193 (2), pp. 312-325
dc.descriptionBrushart, T.M., Preferential reinnervation of motor nerves by regenerating motor axons (1988) J. Neurosci., 8, pp. 1026-1031
dc.descriptionChen, J.C., Ou, Y.C., Liao, S.L., Chen, W.Y., Chen, S.Y., Wu, C.W., Wang, C.C., Hsu, S.H., Transplantation of bone marrow stromal cells for peripheral nerve repair (2007) Exp. Neurol., 204, pp. 443-453
dc.descriptionChoi, B.H., Zhu, S.J., Kim, B.Y., Huh, J.Y., Lee, S.H., Jung, J.H., Transplantation of cultured bone marrow stromal cells to improve peripheral nerve regeneration (2005) Int. J. Oral Maxillofac. Surg., 34, pp. 537-542
dc.descriptionChomia, K.T., Hu, B., What is the optimal value of the g-ratio for myelinated fibers in the rat CNS? A theoretical approach (2009) PLos ONE, 4 (11), pp. e7754
dc.descriptionChorilli, M., Michelin, D.C., Salgado, H.R.N., Laboratory animals: the mouse (2007) J. Basic Appl. Pharma. Sci., 28 (1), pp. 11-23
dc.descriptionCuevas, P., Carceller, F., Dujovny, M., Garcia-Gómez, I., Cuevas, B., González-Corrochabo, R., Diaz-González, D., Reimers, D., Peripheral nerve regeneration by bone marrow stromal cells (2002) Neurol. Res., 24, pp. 634-638
dc.descriptionCui, L., Jiang, J., Wei, L., Zhou, X., Fraser, J.L., Snider, B.J., Yu, S.P., Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats (2008) Stem Cells, 26, pp. 1356-1365
dc.descriptionDezawa, M., Takahashi, I., Esaki, M., Takano, M., Sawada, H., Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells (2001) Eur. J. Neurosci., 14, pp. 1771-1776
dc.descriptionFansa, H., Dodis, T., Wolf, G., Schneider, W., Keilhoff, G., Tissue engineering of peripheral nerves: epineurial grafts with application of cultured Schwann cells (2003) Microsurgery, 23, pp. 72-77
dc.descriptionFernandes, M., Valente, S.G., Fernandes, M.J.S., Félix, E.P.V., Mazzacoratti, M.G.N., Scerni, D.A., Santos, J.B.G., Faloppa, F., Bone marrow cells are able to increase vessels number during repair of sciatic nerve lesion (2008) J. Neurosci. Meth., 170 (1), pp. 16-24
dc.descriptionFrerichs, O., Fansa, H., Schicht, C., Wolf, G., Schneider, W., Keilhoff, G., Reconstruction of peripheral nerves using acellular nerve grafts with implanted cultured Schwann cells (2002) Microsurgery, 22, pp. 311-315
dc.descriptionFu, S.Y., Gordon, T., Contributing factors to poor functional recovery after delayed nerve repair: prolonged axotomy (1995) J. Neurosci., 15 (5), pp. 3876-3885
dc.descriptionFu, S.Y., Gordon, T., The cellular and molecular basis of peripheral nerve regeneration (1997) Mol. Neurobiol., 14, pp. 67-116
dc.descriptionFurey, M.J., Midha, R., Xu, Q.G., Belkas, J., Gordon, T., Prolonged target deprivation reduces the capacity of injured motoneurons to regenerate (2007) Neurosurgery, 60, pp. 723-733
dc.descriptionGordon, T., Sulaiman, O., Gordon, B.J., Experimental strategies to promote functional recovery after peripheral nerve injuries (2003) J. Peripher. Nerv. Syst., 8, pp. 236-250
dc.descriptionHaggiag, S., Zhang, P.L., Slutzky, G., Shinder, V., Kumar, A., Chebath, J., Chebath, J., Revel, M., Stimulation of myelin gene expression in vitro and of sciatic nerve remyelination by interleukin-6 receptor-interleukin-6 chimera (2001) J. Neurosci. Res., 64 (6), pp. 564-574
dc.descriptionHirota, H., Kiyama, H., Kishimoto, T., Taga, T., Accelerated nerve regeneration in mice by upregulated expression of interleukin (IL) 6 and IL-6 receptor after trauma (1996) J. Exp. Med., 183 (6), pp. 2627-2634
dc.descriptionIde, C., Peripheral nerve regeneration (1996) Neurosci. Res., 25, pp. 101-121
dc.descriptionInserra, M.M., Bloch, D., Terris, D.J., Functional indices for sciatic, peroneal and posterior tibial nerve lesions in the mouse (1998) Microsurgery, 18, pp. 119-124
dc.descriptionJohnson, E.O., Soucacos, P.N., Nerve repair: experimental and clinical evaluation of biodegradable artificial nerve guides (2008) Injury, 395, pp. 530-536
dc.descriptionKawada, H., Fujita, J., Kinjo, K., Matsuzaki, Y., Tsuma, M., Miyatake, H., Muguruma, Y., Fukuda, K., Nonhematopoietic MSC can be mobilized and differentiate into cardiomyocytes after myocardial infarction (2004) Blood, 104 (12), pp. 3581-3587
dc.descriptionKeilhoff, G., Goihl, A., Langnäse, K., Fansa, H., Transdifferentiation of mesenchymal stem cells into Schwann cell-like myelinating cells (2006) Eur. J. Cell Biol., 85, pp. 11-24
dc.descriptionKrarup, C., Archibald, S.J., Madison, R.D., Factors that influence peripheral nerve regeneration: an electrophysiological study of the monkey median nerve (2002) Ann. Neurol., 51, pp. 69-81
dc.descriptionLangone, F., Lora, S., Veronese, F.M., Calicete, P., Parniggoto, P.P., Valenti, F., Palma, G., Peripheral nerve repair using a poly(organo)phosphazene tubular prosthesis (1995) Biomaterials, 16, pp. 347-353
dc.descriptionLee, J.H., Kosinski, P.A., Kemp, D.M., Contribution of human bone marrow stem cells to individual skeletal myotubes followed by myogenic gene activation (2005) Exp. Cell Res., 307 (1), pp. 174-182
dc.descriptionLuís, A.L., Rodrigues, J.M., Geuna, S., Amado, S., Simões, M.J., Fregnan, F., Ferreira, A.J., Maurício, A.C., Neural cell transplantation effects on sciatic nerve regeneration after a standardized crush injury in the rat (2008) Microsurgery, 28, pp. 458-470
dc.descriptionLundborg, G., Richard, P., Bunge memorial lecture. Nerve injury and repair-a challenge to the plastic brain (2003) J. Peripher. Nerv. Syst, 8, pp. 209-226
dc.descriptionMackinnon, S.E., Dellon, A.L., Clinical nerve reconstruction with a bioabsorbable polyglycolic acid tube (1990) Plast. Reconstr. Surg., 85, pp. 419-424
dc.descriptionMahay, D., Terenghi, G., Shawcross, S.G., Schwann cell mediated trophic effects by differentiated mesenchymal stem cells (2008) Exp. Cell Res., 314 (14), pp. 2692-2701
dc.descriptionMakwana, M., Raivich, G., Molecular mechanisms in successful peripheral regeneration (2005) FEBS J., 272, pp. 2628-2638
dc.descriptionMezey, E., Key, S., Vogelsang, G., Szalayova, I., Lange, G.D., Crain, B., Transplanted bone marrow generates new neurons in human brains (2003) Proc. Natl. Acad. Sci. U.S.A., 100, pp. 1364-1369
dc.descriptionMoldovan, M., Sorensen, J., Krarup, C., Comparison of the fastest regenerating motor and sensory myelinated axons in the same peripheral nerve (2006) Brain, 129, pp. 2471-2483
dc.descriptionNakamura, T., Inada, Y., Fukuda, S., Yoshitani, M., Nakada, N., Itoi, S., Kanemaru, S., Shimizu, Y., Experimental study on the regeneration of peripheral nerve gaps through a polyglycolic acid-collagen (PGA-collagen) tube (2004) Brain Res., 1027, pp. 18-29
dc.descriptionPereira Lopes, F.R., Moura Campos, L.C., Corrêa, J.D., Balduíno, A., Lora, S., Langone, F., Borojevic, R., Martinez, A.M.B., Bone marrow stromal cells and resorbable collagen guidance tubes enhance sciatic nerve regeneration in mice (2006) Exp. Neurol., 198, pp. 457-468
dc.descriptionPierucci, A., Duek, E.A.R., Oliveira, A.L.R., Peripheral nerve regeneration through biodegradable conduits prepared using solvent evaporation (2008) Tis. Eng. Part A, 5, pp. 595-606
dc.descriptionPiquilloud, G., Christen, T., Pfister, L.A., Gander, B., Papaloïzos, M.Y., Variations in glial cell line-derived neurotrophic factor release from biodegradable nerve conduits modify the rate of functional motor recovery after rat primary nerve repairs (2007) Eur. J. Neurosci., 26, pp. 1109-1117
dc.descriptionSánchez-Ramos, J., Song, S., Cardozo-Pelaez, F., Hazzi, C., Stedeford, T., Willing, A., Freeman, T.B., Sanberg, P.R., Adult bone marrow stromal cells differentiate into neural cells in vitro (2000) Exp. Neurol., 164, pp. 247-256
dc.descriptionSato, Y., Araki, H., Kato, J., Nakamura, K., Kawano, Y., Kobune, M., Sato, T., Niitsu, Y., Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion (2005) Blood, 106 (2), pp. 756-763
dc.descriptionShimizu, S., Kitada, M., Ishikawa, H., Itokazu, Y., Wakao, S., Dezawa, M., Peripheral nerve regeneration by the in vitro differentiated-human bone marrow stromal cells with Schwann cell property (2007) Biochem. Biophys. Res. Commun., 359 (4), pp. 915-920
dc.descriptionSunderland, S., (1978) Nerves and Nerve Injuries, , Churchill Livingstone, Edinburgh
dc.descriptionTerzis, J.K., Sun, D.D., Thanos, P.K., History and basic science review: past, present and future of nerve repair (1997) J. Reconstr. Microsurg., 13, pp. 215-225
dc.descriptionTom, V.J., Doller, C.M., Malouf, A.T., Silver, J., Astrocyte-associated fibronectin is critical for axonal regeneration in adult white matter (2004) J. Neurosci., 24 (42), pp. 9282-9290
dc.descriptionUdina, E., Ceballos, D., Gold, B.G., Navarro, X., FK506 enhances reinnervation by regeneration and collateral sprouting of peripheral nerve fibers (2003) Exp. Neurol., 183, pp. 220-231
dc.descriptionVargas, M.E., Barres, B.A., Why is Wallerian degeneration in the CNS so slow? Annu (2007) Rev. Neurosci., 30, pp. 153-179
dc.descriptionWeber, R.V., Mackinnon, S.E., Bridging the neural gap (2005) Clin. Plastic Surg., 32, pp. 605-616
dc.descriptionXu, J.J., Chen, E.Y., Lu, C.L., He, C., (2009), Recombinant ciliary neurotrophic factor promotes nerve regeneration and induces gene expression in silicon tube-bridged transected sciatic nerves in adult rats. J. Clin. Neurosci., doi:10.1016/j.jocn.2008.08.035
dc.languageen
dc.publisher
dc.relationMicron
dc.rightsfechado
dc.sourceScopus
dc.titleTransplantation Of Bone-marrow-derived Cells Into A Nerve Guide Resulted In Transdifferentiation Into Schwann Cells And Effective Regeneration Of Transected Mouse Sciatic Nerve
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución