dc.creator | Geromel J.C. | |
dc.creator | Deaecto G.S. | |
dc.date | 2014 | |
dc.date | 2015-06-25T17:49:53Z | |
dc.date | 2015-11-26T15:26:50Z | |
dc.date | 2015-06-25T17:49:53Z | |
dc.date | 2015-11-26T15:26:50Z | |
dc.date.accessioned | 2018-03-28T22:35:30Z | |
dc.date.available | 2018-03-28T22:35:30Z | |
dc.identifier | | |
dc.identifier | Ieee Transactions On Automatic Control. Institute Of Electrical And Electronics Engineers Inc., v. 59, n. 11, p. 3046 - 3050, 2014. | |
dc.identifier | 189286 | |
dc.identifier | 10.1109/TAC.2014.2317631 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84908457165&partnerID=40&md5=8abdc29ffcf7888085fe35c8a3b24488 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/85731 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/85731 | |
dc.identifier | 2-s2.0-84908457165 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1261198 | |
dc.description | This technical note aims to introduce stability analysis of Lur'e-type switched systems in frequency domain. A new state-input dependent switching function is proposed and it is the key issue to obtain a stability condition that generalizes the celebrated Popov criterion to deal with this class of switched nonlinear systems. Likewise the case of time invariant systems, we propose a frequency domain stability test that is expressed through a convex combination of the subsystems state space matrices. This task is not trivial due to the time-varying nature of the nonlinear systems under consideration. The theory is illustrated by a simple example. | |
dc.description | 59 | |
dc.description | 11 | |
dc.description | 3046 | |
dc.description | 3050 | |
dc.description | Yu. Aleksandrov, A., Chen, Y., Platonov, A.V., Zhang, L., Stability analysis for a class of switched nonlinear systems (2011) Automatica, 47, pp. 2286-2291 | |
dc.description | Branicky, M.S., Multiple Lyapunov functions and other analysis tools for switched and hybrid systems (1998) IEEE Trans. Autom. Control, 43, pp. 475-482 | |
dc.description | Colaneri, P., Geromel, J.C., Astolfi, A., Stabilization of continuoustime switched nonlinear systems (2008) Syst. Control Lett., 57, pp. 95-103 | |
dc.description | Deaecto, G.S., Geromel, J.C., Daafouz, J., Dynamic output feedback H? Control of switched linear systems (2011) Automatica, 47, pp. 1713-1720 | |
dc.description | Decarlo, R.A., Branicky, M.S., Pettersson, S., Lennartson, B., Perspectives and results on the stability and stabilizability of hybrid systems (2000) Proc IEEE, 88, pp. 1069-1082 | |
dc.description | Geromel, J.C., Colaneri, P., Stability and stabilization of continuoustime switched linear systems (2006) SIAM J. Control Optim., 45, pp. 1915-1930 | |
dc.description | Geromel, J.C., Colaneri, P., Bolzern, P., Dynamic output feedback control of switched linear systems (2008) IEEE Trans. Autom. Control, 53, pp. 720-733 | |
dc.description | Geromel, J.C., Deaecto, G.S., Switched state feedback control for continuous-time uncertain systems (2009) Automatica, 45, pp. 593-597 | |
dc.description | Geromel, J.C., Deaecto, G.S., Daafouz, J., Suboptimal switching control consistency analysis for switched linear systems (2013) IEEE Trans. Autom. Control, 58, pp. 1857-1861 | |
dc.description | Hespanha, J.P., Uniform stability of switched linear systems: Extensions of LaSalle's principle (2004) IEEE Trans. Autom. Control, 49, pp. 470-482 | |
dc.description | Ji, Z., Wang, L., Xie, G., Quadratic stabilization of switched systems (2005) Int. J. Syst. Sci., 36, pp. 395-404 | |
dc.description | Liberzon, D., (2003) Switching in Systems and Control, , Boston MA: Birkhaüser | |
dc.description | Lin, H., Antsaklis, P.J., Stability and stabilizability of switched linear systems: A survey of recent results (2009) IEEE Trans. Autom. Control, 54, pp. 308-322 | |
dc.description | Long, L., Zhao, J., Global stabiization for a class of switched nonlinear feedforward systems (2011) Automatica, 60, pp. 734-738 | |
dc.description | Moulay, E., Bourdais, R., Perruquetti, W., Stabilization of nonlinear switched systems using control Lyapunov functions (2007) Nonlin. Anal.: Hybrid Syst., 1, pp. 482-490 | |
dc.description | Shorten, R., Wirth, F., Mason, O., Wulff, K., King, C., Stability criteria for switched and hybrid systems (2007) SIAM Rev., 49, pp. 545-592 | |
dc.description | Sun, Z., Ge, S.S., (2005) Switched Linear Systems: Control and Design, , London, U.K.: Springer | |
dc.description | Sun, Y., Wang, L., On stability of a class of switched nonlinear systems (2013) Automatica, 49, pp. 305-307 | |
dc.description | Wu, J.-L., Stabilizing controllers design for switched nonlinear systems in strict-feedback form (2009) Automatica, 45, pp. 1092-1096 | |
dc.description | Yang, H., Concquempot, V., Jiang, B., On stabilization of switched nonlinear systems with unstable modes (2009) Syst. Control Lett., 58, pp. 703-708 | |
dc.description | Zhai, G., Quadratic stabilizability and H? Disturbance attenuation of switched linear systems via state and output feedback (2012) Proc IEEE Conf. Decision Control, pp. 1935-1940. , Maui, HI, USA | |
dc.description | Zhao, J., Hill, D.J., On stability L2 gain andH? Control for switched systems (2008) Automatica, 44, pp. 1220-1232 | |
dc.language | en | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
dc.relation | IEEE Transactions on Automatic Control | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Stability Analysis Of Lur'e-type Switched Systems | |
dc.type | Artículos de revistas | |