dc.creatorSanches I.D.
dc.creatorSouza Filho C.R.
dc.creatorKokaly R.F.
dc.date2014
dc.date2015-06-25T17:49:51Z
dc.date2015-11-26T15:26:24Z
dc.date2015-06-25T17:49:51Z
dc.date2015-11-26T15:26:24Z
dc.date.accessioned2018-03-28T22:35:08Z
dc.date.available2018-03-28T22:35:08Z
dc.identifier
dc.identifierIsprs Journal Of Photogrammetry And Remote Sensing. Elsevier, v. 97, n. , p. 111 - 122, 2014.
dc.identifier9242716
dc.identifier10.1016/j.isprsjprs.2014.08.015
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84907165081&partnerID=40&md5=d95f2e2239c34ec98487fef5972ec856
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85725
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85725
dc.identifier2-s2.0-84907165081
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1261120
dc.descriptionThis paper explores the use of spectral feature analysis to detect plant stress in visible/near infrared wavelengths. A time series of close range leaf and canopy reflectance data of two plant species grown in hydrocarbon-contaminated soil was acquired with a portable spectrometer. The ProSpecTIR-VS airborne imaging spectrometer was used to obtain far range hyperspectral remote sensing data over the field experiment. Parameters describing the chlorophyll 680. nm absorption feature (depth, width, and area) were derived using continuum removal applied to the spectra. A new index, the Plant Stress Detection Index (PSDI), was calculated using continuum-removed values near the chlorophyll feature centre (680. nm) and on the green-edge (560 and 575. nm). Chlorophyll feature's depth, width and area, the PSDI and a narrow-band normalised difference vegetation index were evaluated for their ability to detect stressed plants. The objective was to analyse how the parameters/indices were affected by increasing degrees of plant stress and to examine their utility as plant stress indicators at the remote sensing level (e.g. airborne sensor). For leaf data, PSDI and the chlorophyll feature area revealed the highest percentage (67-70%) of stressed plants. The PSDI also proved to be the best constraint for detecting the stress in hydrocarbon-impacted plants with field canopy spectra and airborne imaging spectroscopy data. This was particularly true using thresholds based on the ASD canopy data and considering the combination of higher percentage of stressed plants detected (across the thresholds) and fewer false-positives.
dc.description97
dc.description
dc.description111
dc.description122
dc.description(2011), http://www.asdi.com/products/fieldspec-3-hi-res-portable-spectroradiometer, FieldSpec® Hi-Res portable spectroradiometer. (accessed 04.02.11)(2011), http://www.asdi.com/acessories/plant-probe, Plant probe. (accessed 08.02.11)Carter, G.A., Responses of leaf spectral reflectance to plant stress (1993) Am. J. Bot., 80 (3), pp. 239-243
dc.descriptionCarter, G.A., Ratios of leaf reflectances in narrow wavebands as indicators of plant stress (1994) Int. J. Remote Sens., 15 (3), pp. 697-703
dc.descriptionCarter, G.A., Knapp, A.K., Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration (2001) Am. J. Bot., 88 (4), pp. 677-684
dc.descriptionCarter, G.A., Miller, R.L., Early detection of plant stress by digital imaging within narrow stress-sensitive wavebands (1994) Remote Sens. Environ., 50, pp. 295-302
dc.descriptionChapin, F.S., Integrated responses of plants to stress (1991) Bioscience, 41 (1), pp. 29-36
dc.descriptionClark, R.N., Roush, T.L., Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications (1984) J. Geophys. Res., 89, pp. 6329-6340
dc.descriptionCocks, T., Jenssen, R., Stewart, A., Wilson, I., Shields, T., The HyMap airborne hyperspectral sensor: The system, calibration and performance (1998), pp. 37-43. , In: Schaepman, M., Schlapfer, D., Itten, K.I. (Eds.), Proceedings of the 1st EARSeL Workshop on Imaging Spectroscopy, 6-8 October 1998, Zurich, EARSeL, ParisCurran, P.J., Dungan, J.L., Peterson, D.L., Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: testing the Kokaly and Clark methodologies (2001) Remote Sens. Environ., 76, pp. 349-359
dc.descriptionDe Jong, S.M., Addink, E.A., Hoogenboom, P., Nijland, W., The spectral response of Buxus sempervirens to different types of environmental stress - a laboratory experiment (2012) ISPRS J. Photogrammetry Remote Sens., 74, pp. 56-65
dc.descriptionEitel, J.U.H., Vierling, L.A., Litvak, M.E., Long, D.S., Schulthess, U., Ager, A.A., Krofcheck, D.J., Stoxcheck, L., Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland (2011) Remote Sens. Environ., 115, pp. 3640-3646
dc.descriptionFilella, I., Penuelas, J., The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status (1994) Int. J. Remote Sens., 15 (7), pp. 1459-1470
dc.descriptionGreen, R.O., Eastwood, M.L., Sarture, C.M., Chrien, T.G., Aronsson, M., Chippendale, B.J., Faust, J.A., Williams, O., Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS) (1998) Remote Sens. Environ., 65, pp. 227-248
dc.descriptionGreen, R.O., Hook, S.J., Middleton, E., Turner, W., Ungar, S., Knox, R., The HyspIRI decadal survey mission: update on the mission concept and science objectives for global imaging spectroscopy and multi-spectral thermal measurements (2012), In: Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS 2012), Munich, Germany, 4 pagesHoefnagels, M., (2011) Biology: Concepts and Investigations, , McGraw-Hill
dc.descriptionJackson, R.D., Remote sensing of biotic and abiotic plant stress (1986) Ann. Rev. Phytopathol., 24, pp. 265-287
dc.descriptionJago, R.A., Cutler, M.E.J., Curran, P.J., Estimating canopy chlorophyll concentration from field and airborne spectra (1999) Remote Sens. Environ., 68, pp. 217-224
dc.descriptionKaufmann, H., Segl, S., Duester, T., Rogass, C., Hofer, S., Mueller, A., Chlebek, C., The environmental mapping and analysis program (EnMAP) - presente status of preparatory phase (2012), In: Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS 2012), Munich, Germany, 4 pages, 2012Khanna, S., Santos, M.J., Ustin, S.L., Koltunov, A., Kokaly, R.F., Roberts, D.A., Detection of salt marsh vegetation stress and recovery after the deepwater horizon oil spill in barataria bay, Gulf of Mexico using AVIRIS data (2013) PLoS ONE, 8 (11), p. e78989
dc.descriptionKnipling, E.B., Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation (1970) Remote Sens. Environ., 1, pp. 155-159
dc.descriptionKokaly, R.F., Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration (2001) Remote Sens. Environ., 75, pp. 153-161
dc.descriptionKokaly, R.F., PRISM: Processing routines in IDL for spectroscopic measurements (installation manual and user´s guied, version 1.0) (2011), p. 432. , http://pubs.usgs.gov/of/2011/1155/, U.S. Geological Survey Open-File Report 2011-1155Kokaly, R.F., Clark, R.N., Spectroscopy determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression (1999) Remote Sens. Environ., 67, pp. 267-287
dc.descriptionKokaly, R.F., Despain, D.G., Clark, R.N., Livo, K.E., Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data (2003) Remote Sens. Environ, 84, pp. 437-456
dc.descriptionKokaly, R.F., Couvillion, B.R., Holloway, J.M., Roberts, D.A., Ustin, S.L., Peterson, S.H., Khanna, S., Piazza, S.C., Spectroscopy remote sensing of the distribution and persistence of oil from the deepwater horizon spill in barataria bay marshes (2013) Remote Sens. Environ., 129, pp. 210-230
dc.descriptionLamb, D.W., Steyn-Ross, M., Schaare, P., Hanna, M.M., Silvester, W., Steyn-Ross, A., Estimating leaf nitrogen concentration in ryegrass (Lolium spp.) pasture using the chlorophyll red-edge: theoretical modelling and experimental observations (2002) Int. J. Remote Sens., 23, pp. 3619-3648
dc.descriptionLammoglia, T., Souza Filho, C.R., Unraveling hydrocarbon microseepages in onshore basins using spectral-spatial processing of advanced spaceborne thermal emission and reflection radiometer (ASTER) data (2013) Surv. Geophys., 34 (3), pp. 349-373
dc.descriptionLi, L., Ustin, S.L., Lay, M., Application of AVIRIS data in detection of oil-induced vegetation stress and cover change at Jornada, New Mexico (2005) Remote Sens. Environ, 94, pp. 1-16
dc.descriptionMerzlyak, J.R., Gitelson, A.A., Chivkunova, O.B., Rakitin, V.Y., Nondestructive optical detection of pigment changes during leaf senescence and fruit ripening (1999) Physiol. Plant., 106, pp. 135-141. , Pipelove Accident Report NTSB/PAR-00/01
dc.descriptionMutanga, O., Skidmore, A.K., Hyperspectral band depth analysis for a better estimation of grass biomass (Cenchrus ciliares) measured under controlled laboratory conditions (2004) Int. J. Appl. Earth Obs., 5, pp. 87-96
dc.descriptionMutanga, O., Skidmore, A.K., Prins, H.H.T., Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features (2004) Remote Sens. Environ., 89, pp. 393-408
dc.descriptionNoomen, M.F., Smith, K.L., Colls, J.J., Steven, M.D., Skidmore, A.K., van der Meer, F.D., Hyperspectral indices for detecting changes in canopy reflectance as a result of underground natural gas leakage (2008) Int. J. Remote Sens., 29 (20), pp. 5987-6008
dc.descriptionNoomen, M.F., Van der Werff, H.M.A., Van der Meer, F.D., Spectral and spatial indicators of botanical changes caused by long-term hydrocarbon seepage (2012) Ecol. Infor., 8 (1), pp. 55-64
dc.descriptionPenuelas, J., Gamon, J.A., Fredeen, A.L., Merino, J., Field, C.B., Reflectance indices associated with physiological changes in nitrogen and water-limited sunflower leaves (1994) Remote Sens. Environ., 48, pp. 135-146
dc.descriptionPenuelas, J., Filella, I., Lloret, P., Munoz, F., Vilajeliu, M., Reflectance assessment of mite effects on apple trees (1995) Int. J. Remote Sens., 16, pp. 2727-2733
dc.descriptionRathod, P.H., Rossiter, D.G., Noomen, M.F., Van der Meer, F.D., Proximal spectral sensing to monitor phytoremediation of metal - contaminated soils (2013) Int. J. Phytorem., 15 (5), pp. 405-426
dc.descriptionRichter, R., Schlapfer, D., Atmospheric/topographic correction for airborne imagery: ATCOR-4 User Guide (2012), p. 225. , http://www.rese.ch/pdf/atcor4_manual.pdf, Version 6.3.0, December 2013Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., Monitoring vegetation systems in the great plains with ERTS (1973), 1, pp. 309-317. , Proceedings of the Third Earth Resources Technology Satellite-1 Symposium (ERTS-1) NASA Goddard Space Flight Center, Washington DC. (NASA, SP-351: Washington, DC)Sanches, I.D., Souza Filho, C.R., Magalhães, L.A., Quite´rio, G.C.M., Alves, M.N., Oliveira, W.J., Assessing the impact of hydrocarbon leakages on vegetation using reflectance spectroscopy (2013) ISPRS J. Photogrammetry Remote Sens., 78, pp. 85-101
dc.descriptionSanches, I.D., Souza Filho, C.R., Magalhães, L.A., Quite´rio, G.C.M., Alves, M.N., Oliveira, W.J., Unravelling remote sensing signatures of plants contaminated with gasoline and diesel: an approach using the red edge spectral feature (2013) Environ. Pollut., 174, pp. 16-27
dc.descriptionSanches, I.D., Tuohy, M.P., Hedley, M.J., Mackay, A.D., Seasonal prediction of in situ pasture macronutrients in New Zealand pastoral systems using hyperspectral data (2013) Int. J. Remote Sens., 31 (1), pp. 276-302
dc.descriptionSchmidt, K.S., Skidmore, A.K., Spectral discrimination of vegetation types in a coastal wetland (2003) Remote Sens. Environ., 85, pp. 92-108
dc.descriptionSmith, K.L., Steven, M.D., Colls, J.J., Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks (2004) Remote Sens. Environ., 92, pp. 207-217
dc.descriptionSouza Filho, C.R., Augusto, V., Oliveira, W.J., Lammoglia, T., Detecc¸ão de exsudac¸ões de hidrocarbonetos por geobotaˆnica e sensoriamento remoto multi-temporal: estudo de caso no Remanso do Fogo (MG) (2008) Revista Brasileira de Geocieˆncias, 38 (2), pp. 228-243
dc.description(2012), http://www.spectir.com/wp-content/uploads/2012/02/ProSpecTIR_VS_specs_2011.pdf, ProspecTIR products. (accessed 05.11.12)Staenz, K., Held, A., Summary of current and future terrestrial civilian hyperspectral spaceborne systems (2012), In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2012). Munich, Germany, 4 pagesStaenz, K., Mueller, A., Heiden, U., Overview of terrestrial imaging spectroscopy missions (2013), pp. 3502-3505. , In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2013). Melbourne, AustraliaSwatantran, A., Dubayah, R., Roberts, D., Hofton, M., Blair, B., Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion (2011) Remote Sens. Environ., 115 (11), pp. 2917-2930
dc.descriptionThenkabail, P.S., Lyon, J.G., Huete, A., (2011) Hyperspectral Remote Sensing of Vegetation, , CRC Press, Taylor & Francis Group, Boca Raton, FL, 704p
dc.descriptionZarco-Tejada, P.J., Pushnik, J.C., Dobrowski, S., Ustin, S.L., Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red edge effects (2003) Remote Sens. Environ., 84, pp. 283-294
dc.descriptionZarco-Tejada, P.J., Berni, J.A.J., Sua´rez, L., Sepulcre-Canto´, F., Morales, F., Miller, J.R., Imaging chlorophyll fluorescence with an airborne narrow-band multispectral caˆmera for vegetation stress detection (2009) Remote Sens. Environ., 113 (6), pp. 1262-1275
dc.descriptionZinnert, J.C., Via, S.M., Young, D.R., Distinguishing natural from anthropogenic stress in plants: physiology, fluorescence and hyperspectral reflectance (2013) Plant Soil, 366, pp. 133-141
dc.languageen
dc.publisherElsevier
dc.relationISPRS Journal of Photogrammetry and Remote Sensing
dc.rightsfechado
dc.sourceScopus
dc.titleSpectroscopic Remote Sensing Of Plant Stress At Leaf And Canopy Levels Using The Chlorophyll 680nm Absorption Feature With Continuum Removal
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución