dc.creatorGhiringhelli L.M.
dc.creatorSite L.D.
dc.creatorMosna R.A.
dc.creatorHamilton I.P.
dc.date2010
dc.date2015-06-26T12:36:12Z
dc.date2015-11-26T15:26:12Z
dc.date2015-06-26T12:36:12Z
dc.date2015-11-26T15:26:12Z
dc.date.accessioned2018-03-28T22:34:59Z
dc.date.available2018-03-28T22:34:59Z
dc.identifier
dc.identifierJournal Of Mathematical Chemistry. , v. 48, n. 1, p. 78 - 82, 2010.
dc.identifier2599791
dc.identifier10.1007/s10910-010-9690-6
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-77953535563&partnerID=40&md5=5ab61193887d3b09d5293cd5c7ca27c0
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/91041
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/91041
dc.identifier2-s2.0-77953535563
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1261083
dc.descriptionWe strengthen the connection between information theory and quantum mechanical systems using a recently developed dequantization procedure which results in a decomposition of the kinetic energy as the sum of a classical term and a purely quantum term. For the nearly uniform electron gas, we thereby approximate the noninteracting kinetic energy as the sum of the Thomas-Fermi term, which is exact for the uniform electron gas, and the Weizsäcker term, which is proportional to the Fisher information. Electron correlation is included via a nonlocal analytical expression which is a functional of the (N-1)-conditional probability density. This expression is evaluated via a statistically rigorous Monte-Carlo procedure to obtain the correlation energy as a functional of the electron density. We show that this functional is well aproximated by a term which is proportional to the Shannon entropy. Thus the kinetic energy is expressed as the standard Thomas-Fermi term plus terms which are proportional to two of the cornerstones of information theory: the Fisher information, which is a measure of localization, and the Shannon entropy, which is a measure of delocalization. © 2010 Springer Science+Business Media, LLC.
dc.description48
dc.description1
dc.description78
dc.description82
dc.descriptionVedral, V., (2006) Introduction to Quantum Information Science, , Oxford: Oxford University Press
dc.descriptionFisher, R.A., (1925) Proc. Camb. Philos. Soc., 22, pp. 700-725
dc.descriptionNagy, A., (2003) J. Chem. Phys., 119, pp. 9401-9405
dc.descriptionRomera, E., Dehesa, J.S., (2004) J. Chem. Phys., 120, pp. 8906-8912
dc.descriptionSen, K.D., Antolín, J., Angulo, J.C., (2007) Phys. Rev. A, 76, p. 032502. , (7 pages)
dc.descriptionParr, R.G., Yang, W., (1989) Density Functional Theory of Atoms and Molecules, , Oxford: Oxford University Press
dc.descriptionThomas, L.H., (1927) Proc. Cambridge Philos. Soc., 23, pp. 542-548
dc.descriptionFermi, E., (1927) Rend. Accad. Lincei, 6, pp. 602-607
dc.descriptionvon Weizsäcker, C.F., (1935) Z. Phys., 96, pp. 431-458
dc.descriptionMosna, R.A., Hamilton, I.P., Delle Site, L., (2005) J. Phys. A, 38, pp. 3869-3878
dc.descriptionMosna, R.A., Hamilton, I.P., Delle Site, L., (2006) J. Phys. A, 39, pp. L229-L235
dc.descriptionHamilton, I.P., Mosna, R.A., Delle Site, L., (2007) Theor. Chem. Acct., 118, pp. 407-415
dc.descriptionDelle Site, L., (2007) J. Phys. A, 40, pp. 2787-2792
dc.descriptionGhiringhelli, L.M., Delle Site, L., (2008) Phys. Rev. B, 77, p. 073104. , (4 pages)
dc.languageen
dc.publisher
dc.relationJournal of Mathematical Chemistry
dc.rightsfechado
dc.sourceScopus
dc.titleInformation-theoretic Approach To Kinetic-energy Functionals: The Nearly Uniform Electron Gas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución