Artículos de revistas
Ca2+-induced Increased Lipid Packing And Domain Formation In Submitochondrial Particles. A Possible Early Step In The Mechanism Of Ca2+- Stimulated Generation Of Reactive Oxygen Species By The Respiratory Chain
Registro en:
Biochemistry. , v. 38, n. 40, p. 13279 - 13287, 1999.
62960
10.1021/bi9828674
2-s2.0-0032589515
Autor
Grijalba M.T.
Vercesi A.E.
Schreier S.
Institución
Resumen
Ca2+ and P(i) accumulation by mitochondria triggers a number of alterations leading to nonspecific increase in inner membrane permeability [Kowaltowski, A. J., et al. (1996) J. Biol. Chem. 271, 29292934]. The molecular nature of the membrane perturbation that precedes oxidative damage is still unknown. EPR spectra of spin probes incorporated in submitochondrial particles (SMP) and in model membranes suggest that Ca2+-cardiolipin (CL) complexation plays an important role. Ca2+-induced lipid domain formation was detected in SMP but not in mitoplasts, in SMP extracted lipids, or in CL- containing liposomes. The results were interpreted in terms of Ca2+ sequestration of CL tightly bound to membrane proteins, in particular the ADP-ATP carrier, and formation of CL-enriched strongly immobilized clusters in lipid shells next to boundary lipid. The in-plane lipid and protein rearrangement is suggested to cause increased reactive oxygen species production in succinate-supplemented, antimycin A-poisoned SMP, favoring the formation of carbon-centered radicals, detected by EPR spin trapping. Removal of tightly bound CL is also proposed to cause protein aggregation, facilitating intermolecular thiol oxidation. Lipid peroxidation was also monitored by the disappearance of the nitroxide EPR spectrum. The decay was faster for nitroxides in a more hydrophobic environment, and was inhibited by butylated hydroxytoluene, by EGTA, or by substituting Mg2+ for Ca2+. In addition, Ca2+ caused an increase in permeability, evidenced by the release of carboxyfluorescein from respiring SMP. The results strongly support Ca2+ binding to CL as one of the early steps in the molecular mechanism of Ca2+- induced nonspecific inner mitochondrial membrane permeabilization. 38 40 13279 13287 Zoratti, M., Szabò, I., (1995) Biochim. Biophys. Acta, 1241, pp. 139-176 Fagian, M.M., Pereira-Da-Silva, L., Martins, I.S., Vercesi, A.E., (1990) J. Biol. Chem., 265, pp. 19955-19960 Kowaltowski, A.J., Castilho, R.F., Grijalba, M.T., Bechara, E.J.H., Vercesi, A.E., (1996) J. Biol. Chem., 271, pp. 2929-2934 Halestrap, A.P., Woodfield, K.-Y., Connern, C.P., (1997) J. Biol. Chem., 272, pp. 3346-3354 Vercesi, A.E., Kowaltowski, A.J., Grijalba, M.T., Meinicke, A.R., Castilho, R.F., (1997) Biosci. Rep., 17, pp. 43-52 Kowaltowski, A.J., Castilho, R.F., Vercesi, A.E., (1995) Am. J. Physiol., pp. C141-C147 Kowaltowski, A.J., Netto, L.E.S., Vercesi, A.E., (1998) J. Biol. Chem., 273, pp. 12766-12769 Novgorodov, S.A., Gudz, T.I., Brierley, G.P., Pfeiffer, D.R., (1989) Arch. Biochem. Biophys., 311, pp. 219-228 Ambrosio, G., Zweier, J.L., Duilio, C., Kuppusamy, P., Santoro, G., Elia, P.P., Trito, I., Flaherty, J.T., (1993) J. Biol. Chem., 268, pp. 18532-18541 Greene, E.L., Paller, M.S., (1994) Am. J. Physiol., 266, pp. F13-F20 Harb, J.S., Comte, J., Gautheron, D.C., (1980) Arch. Biochem. Biophys., 208, pp. 305-318 Hoch, F.L., (1992) Biochim. Biophys. Acta, 1113, pp. 71-133 Powell, G.L., Knowles, P.F., Marsh, D., (1987) Biochemistry, 26, pp. 8138-8145 Beyer, K., Klingenberg, M., (1985) Biochemistry, 24, pp. 3826-3831 De Kruijff, B., Verkleij, A.J., Leunissen-Bijvelt, J., Van Echteld, C.J.A., Hille, J., Rijnbout, H., (1982) Biochim. Biophys. Acta, 693, pp. 1-12 Ohnishi, S., Ito, T., (1974) Biochemistry, 13, pp. 881-887 Haverstick, D.M., Glaser, M., (1987) Proc. Natl. Acad. Sci. U.S.A., 84, pp. 4475-4479 Lieser, G., Mittler-Nehar, S., Spinke, J., Knoll, W., (1994) Biochim. Biophys. Acta 1192, pp. 14-20 Edidin, M., (1997) Curr. Opin. Struct. Biol., pp. 582-1532 Brustovetsky, N., Klingenberg, M., (1996) Biochemistry, 35, pp. 8483-8488 Vercesi, A.E., Reynafarje, B., Lehninger, A.L., (1978) J. Biol. Chem., 253, pp. 6379-6385 Beltran, C., Gomez-Puyou, M.T., Darzon, A., Gomez-Puyou, A., (1986) Eur. J. Biochem., 160, pp. 163-168 Rouser, G., Fleischer, S., Yamamoto, A., (1970) Lipids, 5, pp. 494-496 Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.S., (1951) J. Biol. Chem., 193, pp. 265-275 Folch, J., Lees, M., Sloane-Stanley, G.H., (1957) J. Biol. Chem., 226, pp. 497-501 Hubbell, W.L., McConnell, H.M., (1971) J. Am. Chem. Soc., 93, pp. 314-326 Schreier, S., Polnaszek, C.F., Smith, I.C.P., (1978) Biochim. Biophys. Acta, 515, pp. 375-436 Frezzatti W.A., Jr., Toselli, W.R., Schreier, S., (1986) Biochim. Biophys. Acta, 860, pp. 531-538 Grijalba, M.T., Andrade, B.A., Meinicke, A.R., Castilho, R.F., Vercesi, A.E., Schreier, S., (1998) Free Radical Res., 28, pp. 301-318 Schreier, S., Marsh, D., Smith, I.C.P., (1976) Arch. Biochem. Biophys., 172, pp. 1-11 Jost, P.C., Griffith, O.H., Capaldi, R.A., Vanderkooi, G., (1973) Proc. Natl. Acad. Sci. U.S.A., 70, pp. 480-484 Koltover, V.K., Reichman, L.M., Yasaitis, A.A., Blumenfeld, L.A., (1971) Biochim. Biophys. Acta, 234, pp. 306-310 Cadenas, E.A., Boveris, A., Ragan, C.I., Stoppani, A.O.M., (1977) Arch. Biochem. Biophys., 180, pp. 248-257 Giulivi, C., Boveris, A., Cadenas, E., (1995) Arch. Biochem. Biophys., 316, pp. 909-916 Boveris, A., Cadenas, E.A., Stoppani, A.O.M., (1976) Biochem. J., 156, pp. 435-444 Radi, R., Sims, S., Cassina, A., Turrens, J.F., (1993) Free Radical Biol. Med., 15, pp. 653-659 Arroyo, C.M., Kramer, J.H., Dickens, B.F., Weglicki, W.B., (1987) FEBS Lett., 221, pp. 101-104 Makino, K., Imaishi, H., Morinishi, S., Takeuchi, T., Fujita, Y., (1986) Biochem. Biophys. Res. Commun., 141, pp. 381-386 Killian, J.A., Koorengevel, M.C., Bouwstra, J.A., Gooris, G., Dowhan, W., De Kruijff, B., (1994) Biochim. Biophys. Acta, 1189, pp. 225-232 Mittler-Neher, S., Knoll, W., (1993) Biochim. Biophys. Acta, 1152, pp. 259-269 Cable, M.B., Powell, G.L., (1980) Biochemistry, 19, pp. 5679-5686 Smaal, E.S., Schreuder, C., Van Baal, J.B., Tijburg, P.N.M., Mandersloot, J.G., De Kruijff, B.A., De Gier, J., (1987) Biochim. Biophys. Acta, 897, pp. 191-196 De Kruijff, B., Nayar, R., Cullis, P.R., (1982) Biochim. Biophys. Acta, 684, pp. 47-52 Taraschi, T.F., De Kruijff, B.A., Verkleij, A.J., (1983) Eur. J. Biochem., 129, pp. 621-625 Knowles, P., Watts, A., Marsh, D., (1979) Biochemistry, 18, pp. 4480-4487 Marsh, D., Watts, A., Maschke, W., Knowles, P., (1978) Biochem. Biophys. Res. Commun., 81, pp. 397-402 Kleinschmidt, J., Powell, G.L., Marsh, D., (1998) Biochemistry, 37, pp. 11579-11585 Mahaney, J.E., Kleinschmidt, J., Marsh, D., Thomas, D.D., (1992) Biophys. J., 63, pp. 1513-1522 Trumpower, B.L., (1990) J. Biol. Chem., 265, pp. 11409-11412 Turrens, J.F., Alexander, A., Lehninger, A.L., (1986) Arch. Biochem. Biophys., 237, pp. 408-414 Skulachev, V.P., (1996) FEBS Lett., 397, pp. 7-10 Zhang, L., Yu, L., Yu, C.-A., (1998) J. Biol. Chem., 273, pp. 33972-33976 Nohl, H., Jordan, W., (1986) Biochem. Biophys. Res. Commun., 138, pp. 533-539 Verstraeten, S.V., Nogueira, L.V., Schreier, S., Oteiza, P.I., (1997) Arch. Biochem. Biophys., 338, pp. 121-127