dc.creatorBrown A.J.
dc.creatorHook S.J.
dc.creatorBaldridge A.M.
dc.creatorCrowley J.K.
dc.creatorBridges N.T.
dc.creatorThomson B.J.
dc.creatorMarion G.M.
dc.creatorde Souza Filho C.R.
dc.creatorBishop J.L.
dc.date2010
dc.date2015-06-26T12:40:53Z
dc.date2015-11-26T15:24:24Z
dc.date2015-06-26T12:40:53Z
dc.date2015-11-26T15:24:24Z
dc.date.accessioned2018-03-28T22:33:18Z
dc.date.available2018-03-28T22:33:18Z
dc.identifier
dc.identifierEarth And Planetary Science Letters. , v. 297, n. 1-2, p. 174 - 182, 2010.
dc.identifier0012821X
dc.identifier10.1016/j.epsl.2010.06.018
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-77956010013&partnerID=40&md5=1a06812ea7187c58807a4d83c29eb698
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/91377
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/91377
dc.identifier2-s2.0-77956010013
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1260685
dc.descriptionThe Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) has returned observations of the Nili Fossae region indicating the presence of Mg-carbonate in small (<10km sq2), relatively bright rock units that are commonly fractured (Ehlmann et al., 2008b). We have analyzed spectra from CRISM images and used co-located HiRISE images in order to further characterize these carbonate-bearing units. We applied absorption band mapping techniques to investigate a range of possible phyllosilicate and carbonate minerals that could be present in the Nili Fossae region. We also describe a clay-carbonate hydrothermal alteration mineral assemblage in the Archean Warrawoona Group of Western Australia that is a potential Earth analog to the Nili Fossae carbonate-bearing rock units. We discuss the geological and biological implications for hydrothermal processes on Noachian Mars. © 2010 Elsevier B.V.
dc.description297
dc.description1-2
dc.description174
dc.description182
dc.descriptionBaird, A.K., Clark, B.C., On the Original Igneous Source of Martian Fines (1981) Icarus, 45, pp. 113-123
dc.descriptionBandfield, J.L., Spectroscopic identification of carbonate minerals in the martian dust (2003) Science, 301, pp. 1084-1087
dc.descriptionBell, J.F., Spectroscopy of Mars from 2.04 to 2.44 Mu-M During the 1993 Opposition - Absolute Calibration and Atmospheric Vs Mineralogic Origin of Narrow Absorption Features (1994) Icarus, 111, pp. 106-123
dc.descriptionBibring, J.-P., Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data (2006) Science, 312, pp. 400-404
dc.descriptionBishop, J.L., Recognition of minor constituents in reflectance spectra of Allan Hills 84001 chips and the importance for remote sensing on Mars (1998) Meteorit. Planet. Sci., 33, pp. 693-698
dc.descriptionBishop, J.L., Spectroscopic analysis of Martian meteorite Allan Hills 84001 powder and applications for spectral identification of minerals and other soil components on Mars (1998) Meteorit. Planet. Sci., 33, pp. 699-707
dc.descriptionBlaney, D.L., McCord, T.B., An observational search for carbonates on Mars (1989) J. Geophys. Res., 94, pp. 10159-10166
dc.descriptionBooth, M.C., Kieffer, H.H., Carbonate formation in Marslike environments (1978) J. Geophys. Res., 83, pp. 1809-1915
dc.descriptionBoynton, W.V., Evidence for Calcium Carbonate at the Mars Phoenix Landing Site (2009) Science, 325, pp. 61-64
dc.descriptionBrauhart, C.W., Geochemical Mass-Transfer Patterns as Indicators of the Architecture of a Complete Volcanic-Hosted Massive Sulfide Hydrothermal Alteration System, Panorama District, Pilbara, Western Australia (2001) Econ. Geol., 96, pp. 1263-1278
dc.descriptionBridges, J.C., Alteration Assemblages in Martian Meteorites: Implications for Near-Surface Processes (2001) Space Sci. Rev., 96, pp. 365-392
dc.descriptionBrown, A.J., Spectral Curve Fitting for Automatic Hyperspectral Data Analysis (2006) IEEE Trans. Geosci. Remote Sens., 44, pp. 1601-1608
dc.descriptionBrown, A.J., Hyperspectral Mapping of Ancient Hydrothermal Systems. Earth and Planetary Sciences, Vol. PhD. Macquarie University, Sydney, N.S.W., 2006bBrown, A.J., Short Wave Infrared Reflectance Investigation of Sites of Palaeobiological interest: Applications for Mars Exploration (2004) Astrobiology, 4, pp. 359-376
dc.descriptionBrown, A.J., Hyperspectral and field mapping of an Archaean Komatiite Unit in the Pilbara Craton (2004) Western Australia: Applications for CRISM Mission. LPSC XXXV, , LPI, Houston, Vol. abstract 1420
dc.descriptionBrown, A.J., Hyperspectral Imaging Spectroscopy of a Mars Analog Environment at the North Pole Dome, Pilbara Craton, Western Australia (2005) Aust. J. Earth Sci., 52, pp. 353-364
dc.descriptionBrown, A.J., Hydrothermal alteration at the Panorama Formation, North Pole Dome, Pilbara Craton, Western Australia (2006) Precambrian Res., 151, pp. 211-223
dc.descriptionBrown, A.J., Talc carbonate Weathering as a Possible Terrestrial Analog for Alteration Assemblages in the Nili Fossae Region of Mars (2008) Astrobiology, 8, p. 432
dc.descriptionBrown, A.J., The MARTE Imaging Spectrometer Experiment: Design and Analysis (2008) Astrobiology, 8, pp. 1001-1011
dc.descriptionCalvin, W.M., Hydrous Carbonates on Mars - Evidence from Mariner 6/7 Infrared Spectrometer and Ground-Based Telescopic Spectra (1994) J. Geophys. Res.-Planets, 99, pp. 14659-14675
dc.descriptionCampbell, I.H., Melting in an Archaean mantle plume: heads it's basalts, tails it's komatiites (1989) Nature, 339, pp. 697-699
dc.descriptionCarr, M.H., Retention of an atmosphere on early Mars (1999) J. Geophys. Res.-Planets, 104, pp. 21897-21909
dc.descriptionCatling, D.C., A chemical model for evaporites on early Mars: Possible sedimentary tracers of the climate and implications for exploration (1999) J. Geophys. Res., 104, pp. 16453-16469
dc.descriptionClark, R.N., High spectral resolution reflectance spectroscopy of minerals (1990) J. Geophys. Res., 95 (B), pp. 12653-12680
dc.descriptionClark, R.N., (2007), http://speclab.cr.usgs.gov/spectral.lib06, USGS digital spectral library splib06a Digital Data Series 231. U.S. Geological SurveyCloutis, E.A., (2000) Hydrated Carbonate Minerals: Spectral Reflectance Properties and Possibility of Detection in Martian Spectra. LPSC XXXI, , LPI, Houston, TX, pp. Abstract 1152
dc.descriptionDalton, J.B., Identification of spectrally similar materials using the USGS Tetracorder algorithm: the calcite-epidote-chlorite problem (2004) Remote Sens. Environ., 89, pp. 455-466
dc.descriptionDonaldson, M.J., Redistribution of ore elements during serpentinization and talc-carbonate alteration of some Archean dunites, Western Australia (1981) Econ. Geol., 76, pp. 1698-1713
dc.descriptionEhlmann, B.L., New secondary minerals detected by MRO CRISM and their geologic settings: Kaolinite, chlorite, Illite/Muscovite and the possibility of serpentine or carbonate in Nili Fossae (2007) Seventh International Conference on Mars, , LPI, Pasadena, CA
dc.descriptionEhlmann, B.L., Clay minerals in delta deposit and organic preservation potential on Mars (2008) Nat. Geosci.
dc.descriptionEhlmann, B.L., Orbital Identification of Carbonate-Bearing Rocks on Mars (2008) Science, 322, pp. 1828-1832
dc.descriptionEhlmann, B.L., Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration (2009) J. Geophys. Res., 114
dc.descriptionEhlmann, B.L., Geologic setting of serpentine deposits on Mars (2010) Geophys. Res. Lett., 37, pp. L06201
dc.descriptionFairen, A.G., Inhibition of carbonate synthesis in acidic oceans on early Mars (2004) Nature, 431, pp. 423-426
dc.descriptionFarmer, J.D., Des Marais, D.J., Exploring for a record of ancient Martian life (1999) J. Geophys. Res.-Planets., 104, pp. 26977-26995
dc.descriptionGaffey, S.J., Spectral reflectance of carbonate minerals in the visible and near infrared (0.35-2.55 microns): anhydrous carbonate minerals (1987) J. Geophys. Res., 92, pp. 1429-1440
dc.descriptionGooding, J.L., Chemical weathering on Mars: Thermodynamic stabilities of primary minerals (and their alteration products) from mafic igneous rocks (1978) Icarus, 33, pp. 483-513
dc.descriptionGooding, J.L., Aqueous alteration of the Nakhla meteorite (1991) Meteoritics., 26, pp. 135-143
dc.descriptionGriffith, L.L., Shock, E.L., A Geochemical Model for the Formation of Hydrothermal Carbonates on Mars (1995) Nature, 377, pp. 406-408
dc.descriptionHaberle, R.M., A Model for the Evolution of Co2 on Mars (1994) Icarus, 109, pp. 102-120
dc.descriptionHamilton, V.E., Christensen, P.R., Evidence for extensive, olivine-rich bedrock on Mars (2005) Geology, 33, pp. 433-436
dc.descriptionHoefen, T.M., Discovery of Olivine in the Nili Fossae Region of Mars (2003) Science, 302, pp. 627-630
dc.descriptionHunt, G.R., Salisbury, J.W., Visible and Near-Infrared Spectra of Minerals and Rocks: II Carbonates. (1971) Mod. Geol., 2, pp. 23-30
dc.descriptionJakosky, B.M., Mars Atmospheric Loss and Isotopic Fractionation by Solar-Wind- Induced Sputtering and Photochemical Escape (1994) Icarus, 111, pp. 271-288
dc.descriptionJouglet, D., Search for Carbonates on Mars with the OMEGA/Mars Express Data (2007) Seventh International Conference on Mars, , LPI, Pasadena, CA, pp. Abstract #3153
dc.descriptionKahn, R., The evolution of CO2 on Mars (1985) Icarus, 62, pp. 175-190
dc.descriptionKirkland, L.E., Thermal Infrared Spectral Band Detection Limits for Unidentified Surface Materials (2001) Appl. Opt., 40, pp. 4852-4862
dc.descriptionLellouch, E., The 2.4-45 mu m spectrum of Mars observed with the Infrared Space Observatory (2000) Planet. Space Sci., 48, pp. 1393-1405
dc.descriptionLoizeau, D., Phyllosilicates in the Mawrth Vallis region of Mars (2007) J. Geophys. Res., 112. , E08S08
dc.descriptionLoizeau, D., Stratigraphy in the Mawrth Vallis region through OMEGA, HRSC color imagery and DTM (2010) Icarus, 205, pp. 396-418
dc.descriptionLonghi, J., Takahashi, T., (2006) Oceans on Mars: Whither Carbonate? , LPSC XXXVII, , LPI, Houston, TX, pp. Abstract 2455
dc.descriptionLowell, R.P., Rona, P.A., Hydrothermal models for the generation of massive sulfide ore deposits (1985) J. Geophys. Res., 90, pp. 8769-8783
dc.descriptionMangold, N., Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust. (2007) J. Geophys. Res., 112
dc.descriptionMcGuire, P.C., An improvement to the volcano-scan algorithm for atmospheric correction of CRISM and OMEGA spectral data (2009) Planet. Space Sci., 57, pp. 809-815
dc.descriptionMcKay, C.P., Nedell, S.S., Are there carbonate deposits in the Valles Marineris, Mars? (1988) Icarus, 73, pp. 142-148
dc.descriptionMcKay, D.S., Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001 (1996) Science, 273, pp. 924-930
dc.descriptionMoody, J.B., Serpentinization: a review (1976) Lithos, 9, pp. 125-138
dc.descriptionMoore, J.M., Blueberry fields for ever (2004) Nature, 428, pp. 711-712
dc.descriptionMorris, R.V., (2010), Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover. Science. science.1189667Morse, J.W., Marion, G.M., The role of carbonates in the evolution of early Martian oceans (1999) Am. J. Sci., 299, pp. 738-761
dc.descriptionMumma, M.J., Strong Release of Methane on Mars in Northern Summer 2003 (2009) Science, 323, pp. 1041-1045
dc.descriptionMurchie, S., Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) (2007) J. Geophys. Res., 112, pp. E05S03
dc.descriptionMustard, J.F., Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian (2007) J. Geophys. Res., 112
dc.descriptionMustard, J.F., The Surface of Syrtis Major - Composition of the Volcanic Substrate and Mixing with Altered Dust and Soil (1993) J. Geophys. Res.-Planets., 98, pp. 3387-3400
dc.descriptionMustard, J.F., Olivine and Pyroxene Diversity in the Crust of Mars (2005) Science, 307, pp. 1594-1597
dc.descriptionMustard, J.F., Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument (2008) Nature, 454, pp. 305-309
dc.descriptionNelder, J.A., Mead, R., A simplex method for function minimization (1965) Comput. J., 7, pp. 308-313
dc.descriptionNiles, P.B., Insights into the formation of Fe- and Mg-rich aqueous solutions on early Mars provided by the ALH 84001 carbonates (2009) Earth Planet. Sci. Lett., 286, pp. 122-130
dc.descriptionO'Connor, J.T., Mineral Stability at the Martian Surface (1968) J. Geophys. Res., 73, pp. 5301-5311
dc.descriptionOze, C., Sharma, M., Have olivine, will gas: Serpentinization and the abiogenic production of methane on Mars (2005) Geophys. Res. Lett., 32, p. 10203
dc.descriptionPalomba, E., Evidence for Mg-rich carbonates on Mars from a 3.9 [mu]m absorption feature (2009) Icarus, 203, pp. 58-65
dc.descriptionPerry, K.A., (2010) Mineralogy of Libya Montes, Mars and Applications of Phyllosiliate-Carbonate-Olivine Mixtures. LPSC XXXXI, , LPI, Houston, TX, pp. Abstract #2605
dc.descriptionPollack, J.B., The case for a wet, warm climate on early Mars (1987) Icarus, 71, pp. 203-224
dc.descriptionPollack, J.B., Thermal emission spectra of Mars (5.4-10.5um): Evidence for sulfates, carbonates and hydrates (1990) J. Geophys. Res., 95, pp. 14595-14627
dc.descriptionQuinn, R., The Photochemical Stability of Carbonates on Mars (2006) Astrobiology, 6, pp. 581-591
dc.descriptionReyes, D.P., Christensen, P.R., Evidence for Komatiite-Type Lavas on Mars from Phobos Ism Data and Other Observations (1994) Geophys. Res. Lett., 21, pp. 887-890
dc.descriptionRomanek, C.S., Martian Carbonates in Alh 84001 - Textural, Elemental, and Stable Isotopic Compositional Evidence on Their Formation (1994) Meteoritics., 29, pp. 523-523
dc.descriptionSarrazin, P., Field deployment of a portable X-ray diffraction/X-ray florescence instrument on Mars analog terrain (2005) Powder Diffr., 20, pp. 128-133
dc.descriptionSavitzky, A., Golay, M.J.E., Smoothing and differentiation of data by simplified least squares procedures (1964) Anal. Chem., 36, pp. 1627-1639
dc.descriptionSchaefer, M.W., Geochemical Evolution of the Northern Plains of Mars: Early Hydrosphere, Carbonate Development, and Present Morphology (1990) J. Geophys. Res., 95, pp. 14291-14300
dc.descriptionSchaefer, M.W., Aqueous geochemistry on early Mars (1993) Geochimica et Cosmochemica Acta., 57, pp. 4619-4625
dc.descriptionTreiman, A.H., Hydrothermal origin for carbonate globules in Martian meteorite ALH84001: a terrestrial analogue from Spitsbergen (Norway) (2002) Earth Planet. Sci. Lett., 204, pp. 323-332
dc.descriptionUeno, Y., Carbon isotopes and petrography of kerogens in 3.5-Ga hydrothermal silica dikes in the North Pole area, Western Australia (2004) Geochim. Cosmochim. Acta, 68, pp. 573-589
dc.descriptionVan Kranendonk, M.J., Geology and tectonic evolution of the archean North Pilbara terrain, Pilbara Craton, Western Australia (2002) Econ. Geol. Bull. Soc. Econ. Geol., 97, pp. 695-732
dc.descriptionVan Kranendonk, M.J., Geological setting of Earth's oldest fossils in the ca. 3.5†Ga Dresser Formation, Pilbara Craton, Western Australia (2008) Precambrian Res., 167, pp. 93-124
dc.descriptionWagner, C., Schade, U., Measurements and calculations for estimating the spectrometric detection limit for carbonates in Martian soil (1996) Icarus, 123, pp. 256-268
dc.descriptionWalter, M.R., Des Marais, D.J., Preservation of Biological Information in Thermal-Spring Deposits - Developing a Strategy for the Search for Fossil Life on Mars (1993) Icarus, 101, pp. 129-143
dc.descriptionWalter, M.R., Stromatolites 3400-3500 Myr old from the North Pole area, Western Australia (1980) Nature, 284, pp. 443-445
dc.descriptionWelhan, J.A., Origins of methane in hydrothermal systems (1988) Chem. Geol., 71, pp. 183-198
dc.descriptionWentworth, S.J., Gooding, J.L., Carbonate and Sulfate Minerals in the Chassigny Meteorite (1991) Meteoritics., 26, pp. 408-409
dc.descriptionWentworth, S.J., Gooding, J.L., Carbonates and Sulfates in the Chassigny Meteorite - Further Evidence for Aqueous Chemistry on the Snc Parent Planet (1994) Meteoritics., 29, pp. 860-863
dc.descriptionWhite, W.B., The carbonate minerals (1974) The Infra-Red Spectra of Minerals, pp. 227-284. , Mineralogical Society, London, UK, V.C. Farmer (Ed.)
dc.descriptionZahnle, K., (2010) Is there Methane on Mars? , LPSC 41, , LPI, Houston, TX, pp. Abs. #2456
dc.languageen
dc.publisher
dc.relationEarth and Planetary Science Letters
dc.rightsfechado
dc.sourceScopus
dc.titleHydrothermal Formation Of Clay-carbonate Alteration Assemblages In The Nili Fossae Region Of Mars
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución