dc.creatorMenshikov M.
dc.creatorPopov S.
dc.date2014
dc.date2015-06-25T17:49:35Z
dc.date2015-11-26T15:24:00Z
dc.date2015-06-25T17:49:35Z
dc.date2015-11-26T15:24:00Z
dc.date.accessioned2018-03-28T22:32:52Z
dc.date.available2018-03-28T22:32:52Z
dc.identifier
dc.identifierJournal Of Theoretical Probability. Springer New York Llc, v. 27, n. 2, p. 601 - 617, 2014.
dc.identifier8949840
dc.identifier10.1007/s10959-012-0431-6
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84899511442&partnerID=40&md5=a56db574e84410efe5ce0c4d913d3aea
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85681
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85681
dc.identifier2-s2.0-84899511442
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1260576
dc.descriptionWe consider a discrete-time process adapted to some filtration which lives on a (typically countable) subset of ℝd, d≥2. For this process, we assume that it has uniformly bounded jumps, and is uniformly elliptic (can advance by at least some fixed amount with respect to any direction, with uniformly positive probability). Also, we assume that the projection of this process on some fixed vector is a submartingale, and that a stronger additional condition on the direction of the drift holds (this condition does not exclude that the drift could be equal to 0 or be arbitrarily small). The main result is that with very high probability the number of visits to any fixed site by time n is less than n1/2-δ for some δ > 0. This in its turn implies that the number of different sites visited by the process by time n should be at least n1/2+δ. © 2012 Springer Science+Business Media, LLC.
dc.description27
dc.description2
dc.description601
dc.description617
dc.descriptionAlves, O.S.M., Machado, F.P., Popov, S.Y., The shape theorem for the frog model (2002) Ann. Appl. Probab., 12 (2), pp. 534-547
dc.descriptionAspandiiarov, S., Iasnogorodski, R., Menshikov, M., Passage-time moments for nonnegative stochastic processes and an application to reflected random walks in a quadrant (1996) Ann. Probab., 24 (2), pp. 932-960
dc.descriptionBenjamini, I., Izkovsky, R., Kesten, H., On the range of the simple random walk bridge on groups (2007) Electronic J. Probab., 12 (20), pp. 591-612
dc.descriptionBenjamini, I., Wilson, D.B., Excited random walk (2003) Electron. Commun. Probab., 8, pp. 86-92
dc.descriptionBérard, J., Ramírez, A., Central limit theorem for the excited random walk in dimension d≥2 (2007) Electron. Commun. Probab., 12, pp. 303-314
dc.descriptionČerný, J., Moments and distribution of the local time of a two-dimensional random walk (2007) Stoch. Process. Appl., 117 (2), pp. 262-270
dc.descriptionCsáki, E., Csörgö, M., Földes, A., Révész, P., On the local time of random walk on the 2-dimensional comb (2011) Stoch. Process. Appl., 121 (6), pp. 1290-1314
dc.descriptionCsáki, E., Földes, A., Révész, P., Joint asymptotic behavior of local and occupation times of random walk in higher dimension (2007) Studia Sci. Math. Hung., 44 (4), pp. 535-563
dc.descriptionCsáki, E., Révész, P., Rosen, J., Functional laws of the iterated logarithm for local times of recurrent random walks on ℤ2 (1998) Ann. Inst. Henri Poincaré B, Probab. Stat., 34 (4), pp. 545-563
dc.descriptionDonsker, M.D., Varadhan, S.R.S., On the number of distinct sites visited by a random walk (1979) Commun. Pure Appl. Math., 32 (6), pp. 721-747
dc.descriptionHamana, Y., An almost sure invariance principle for the range of random walks (1998) Stoch. Process. Appl., 78 (2), pp. 131-143
dc.descriptionvan der Hofstad, R., Holmes, M.P., Monotonicity for excited random walk in high dimensions (2010) Probab. Theory Relat. Fields, 147 (1-2), pp. 333-348
dc.descriptionHughes, B.D., (1995) Random Walks and Random Environments, 1. , Oxford: Clarendon
dc.descriptionMacPhee, I.M., Menshikov, M.V., Wade, A.R., Moments of exit times from wedges for non-homogeneous random walks with asymptotically zero drifts (2012) J. Theor. Probab., , arXiv: 0806. 4561
dc.descriptionMarcus, M.B., Rosen, J., Logarithmic averages for the local times of recurrent random walks and Lévy processes (1995) Stoch. Process. Appl., 59 (2), pp. 175-184
dc.descriptionMenshikov, M., Popov, S., Ramírez, A., Vachkovskaia, M., On a general many-dimensional excited random walk (2012) Ann. Probab., , arXiv: 1001. 1741
dc.descriptionRau, C., Sur le nombre de points visités par une marche aléatoire sur un amas infini de percolation (2007) Bull. Soc. Math. Fr., 135 (1), pp. 135-169
dc.descriptionSpitzer, F., (1976) Principles of Random Walks, , 2nd edn., Berlin: Springer
dc.descriptionZerner, M.P.W., Recurrence and transience of excited random walks on ℤd and strips (2006) Electron. Commun. Probab., 11, pp. 118-128
dc.languageen
dc.publisherSpringer New York LLC
dc.relationJournal of Theoretical Probability
dc.rightsfechado
dc.sourceScopus
dc.titleOn Range And Local Time Of Many-dimensional Submartingales
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución