dc.creatorMadeiro S.S.
dc.creatorZuben F.J.V.
dc.date2012
dc.date2015-06-25T20:27:18Z
dc.date2015-11-26T15:23:53Z
dc.date2015-06-25T20:27:18Z
dc.date2015-11-26T15:23:53Z
dc.date.accessioned2018-03-28T22:32:46Z
dc.date.available2018-03-28T22:32:46Z
dc.identifier9780769549132
dc.identifierProceedings - 2012 11th International Conference On Machine Learning And Applications, Icmla 2012. , v. 1, n. , p. 344 - 349, 2012.
dc.identifier
dc.identifier10.1109/ICMLA.2012.64
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84873602436&partnerID=40&md5=50f20610b80de2d40eb2b66075d2a6b2
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/90710
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/90710
dc.identifier2-s2.0-84873602436
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1260555
dc.descriptionFuzzy Cognitive Map (FCM) is a tool for modeling and representing discrete dynamical systems. Several approaches were proposed for the automatic learning of FCM on the basis of historical data. The learning techniques can be grouped into three types: Hebbian-based, population-based, and hybrid, which combines both types. Despite the good overall results achieved by population-based approaches relative to the other learning paradigms, it is possible to improve their performance by combining them with local search procedures. In this paper, we investigate the performance of a multi-start gradient-based method and two evolutionary methods hybridized with a gradient-based local search procedure for the learning of FCMs. We tested the proposed approaches for synthetic and real world FCM models. The results show that it was possible to improve the performance of the evolutionary methods with a relatively small increase in the resultant computational time. © 2012 IEEE.
dc.description1
dc.description
dc.description344
dc.description349
dc.descriptionKosko, B., Fuzzy cognitive maps (1986) International Journal OfMan-Machine Studies, 24, pp. 65-75
dc.descriptionStach, W., Kurgan, L., Pedrycz, W., Reformat, M., Geneticlearning of fuzzy cognitive maps (2005) Fuzzy Sets and Systems, 153 (3), pp. 371-401
dc.descriptionPapageorgiou, E., Learning algorithms for fuzzy cognitivemaps- A review study (2012) IEEE Trans. Syst., Man, Cybern. C,Appl. Rev, 42 (2), pp. 150-163
dc.descriptionFroelich, W., Juszczuk, P., Predictive capabilities of adaptiveand evolutionary fuzzy cognitive maps- A comparativestudy (2009) Intelligent Systems for Knowledge Management, Ser.Studies in Computational Intelligence, 252, pp. 153-174. , Springer
dc.descriptionStach, W., Kurgan, L., Pedrycz, W., A divide and conquermethod for learning large fuzzy cognitive maps (2010) Fuzzy Setsand Systems, 161 (19), pp. 2515-2532
dc.descriptionSalomon, R., Evolutionary algorithms and gradient search:similarities and differences (1998) IEEE Trans. Evol. Comput, 2 (2), pp. 45-55
dc.descriptionJin, Y., Branke, J., Evolutionary optimization in uncertainenvironments- A survey (2005) IEEE Trans. Evol. Comput, 9 (3), pp. 303-317
dc.descriptionChen, X., A multi-facet survey on memetic computation (2011) IEEE Trans. Evol. Comput, 15 (5), pp. 591-607
dc.descriptionAxelrod, R., (1976) Structure of Decision: The Cognitive Maps OfPolitical Elites, , Princeton University Press
dc.descriptionKosko, B., Adaptive inference in fuzzy knowledge networks (1987) IEEE International Conference on Neural Networks, pp. 261-268
dc.descriptionGalor, O., (2010) Discrete Dynamical Systems, , Springer
dc.descriptionZhang, W., Chen, S., A logical architecture for cognitivemaps (1988) IEEE International Conference on Neural Networks, pp. 231-238
dc.descriptionNeri, F., Tirronen, V., Recent advances in differentialevolution: A survey and experimental analysis (2010) ArtificialIntelligence Review, 33, pp. 61-106
dc.descriptionBack, T., Fogel, D., Michalewicz, Z., (2000) EvolutionaryComputation 1: Basic Algorithms and Operators, , Taylor &Francis
dc.descriptionMichalewicz, Z., (1998) Genetic Algorithms + Data Structures =Evolution Programs, , Springer
dc.descriptionM̈uhlenbein, H., Schlierkamp-Voosen, D., Predictive modelsfor the breeder genetic algorithm (1993) Evolutionary Computation, 1 (1), pp. 25-49
dc.descriptionHaykin, S., (1999) Neural Networks: A Comprehensive Foundation, , Prentice Hall
dc.descriptionKelley, C.T., Iterative methods for optimization (1999) Society ForIndustrial and Applied Mathematics
dc.descriptionGhaderi, S., Azadeh, A., Nokhandan, B.P., Fathi, E., Behavioral simulation and optimization of generationcompanies in electricity markets by fuzzy cognitive map (2012) Expert Syst. Appl, 39 (5), pp. 4635-4646
dc.descriptionHossain, S., Brooks, L., Fuzzy cognitive map modellingeducational software adoption (2008) Computers & Education, 51 (4), pp. 1569-1588
dc.languageen
dc.publisher
dc.relationProceedings - 2012 11th International Conference on Machine Learning and Applications, ICMLA 2012
dc.rightsfechado
dc.sourceScopus
dc.titleGradient-based Algorithms For The Automatic Construction Of Fuzzy Cognitive Maps
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución