dc.creatorda Silva V.C.H.
dc.creatorRamos C.H.I.
dc.date2012
dc.date2015-06-25T20:27:04Z
dc.date2015-11-26T15:23:51Z
dc.date2015-06-25T20:27:04Z
dc.date2015-11-26T15:23:51Z
dc.date.accessioned2018-03-28T22:32:44Z
dc.date.available2018-03-28T22:32:44Z
dc.identifierJournal Of Proteomics. , v. 75, n. 10, p. 2790 - 2802, 2012.
dc.identifier10.1016/j.jprot.2011.12.028
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84860339862&partnerID=40&md5=6935a28ba1343c7c1e75b8c239f9bd3a
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/90652
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/90652
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1260546
dc.descriptionIn the cell, proteins interact within a network in which a small number of proteins are highly connected nodes or hubs. A disturbance in the hub proteins usually has a higher impact on the cell physiology than a disturbance in poorly connected nodes. In eukaryotes, the cytosolic Hsp90 is considered to be a hub protein as it interacts with molecular chaperones and co-chaperones, and has key regulatory proteins as clients, such as transcriptional factors, protein kinases and hormone receptors. The large number of Hsp90 partners suggests that Hsp90 is involved in very important functions, such as signaling, proteostasis and epigenetics. Some of these functions are dysregulated in cancer, making Hsp90 a potential target for therapeutics. The number of Hsp90 interactors appears to be so large that a precise answer to the question of how many proteins interact with this chaperone has no definitive answer yet, not even if the question refers to specific Hsp90s as one of the human cytosolic forms. Here we review the major chaperones and co-chaperones that interact with cytosolic Hsp90s, highlighting the latest findings regarding client proteins and the role that posttranslational modifications have on the function and interactions of these molecular chaperones. This article is part of a Special Issue entitled: Proteomics: The clinical link. © 2011 Elsevier B.V..
dc.description75
dc.description10
dc.description2790
dc.description2802
dc.descriptionDyson, H.J., Wright, P.E., Unfolded proteins and protein folding studied by NMR (2004) Chem Rev, 104, pp. 3607-3622
dc.descriptionTompa, P., The interplay between structure and function in intrinsically unstructured proteins (2005) FEBS Lett, 579, pp. 3346-3354
dc.descriptionHartl, F.U., Chaperone-assisted protein folding: the path to discovery from a personal perspective (2011) Nat Med, 17, pp. 1206-1210
dc.descriptionHorwich, A.L., Protein folding in the cell: an inside story (2011) Nat Med, 17, pp. 1211-1216
dc.descriptionBukau, B., Weissman, J., Horwich, A., Molecular chaperones and protein quality control (2006) Cell, 125, pp. 443-451
dc.descriptionHartl, F.U., Bracher, A., Hayer-Hartl, M., Molecular chaperones in protein folding and proteostasis (2011) Nature, 475, pp. 324-332
dc.descriptionTiroli-Cepeda, A., Ramos, C.H.I., An overview of the role of molecular chaperones in protein homeostasis (2011) Protein Pept Lett, 18, pp. 101-109
dc.descriptionRamos, C.H.I., Ferreira, S.T., Protein folding, misfolding and aggregation: evolving concepts and conformational diseases (2005) Protein Pept Lett, 12, pp. 213-222
dc.descriptionLuheshi, L.M., Crowther, D.C., Dobson, C.M., Protein misfolding and disease: from the test tube to the organism (2008) Curr Opin Chem Biol, 12, pp. 25-31
dc.descriptionKikis, E.A., Gidalevitz, T., Morimoto, R.I., Protein homeostasis in models of aging and age-related conformational disease (2010) Adv Exp Med Biol, 694, pp. 138-159
dc.descriptionAnderson, J.F., Siller, E., Barral, J.M., Disorders of protein biogenesis and stability (2011) Protein Pept Lett, 18, pp. 110-121
dc.descriptionGeorgakis, G.V., Li, Y., Younes, A., The heat shock protein 90 inhibitor 17-AAG induces cell cycle arrest and apoptosis in mantle cell lymphomacell lines by depleting cyclin D1, Akt, Bid and activating caspase 9 (2006) Br J Haematol, 135, pp. 68-71
dc.descriptionAhmad, N., Kumar, R., Steroid hormone receptors in cancer development: a target for cancer therapeutics (2011) Cancer Lett, 300, pp. 1-9
dc.descriptionEcheverría, P.C., Picard, D., Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility (2010) Biochim Biophys Acta, 1803, pp. 641-649
dc.descriptionSoussi, T., Legros, Y., Lubin, R., Ory, K., Schlichtholz, B., Multifactorial analysis of p53 alteration in human cancer: a review (1994) Int J Cancer, 57, pp. 1-9
dc.descriptionVogelstein, B., Lane, D., Levine, A.J., Surfing the p53 network (2000) Nature, 408, pp. 307-310
dc.descriptionRömer, L., Klein, C., Dehner, A., Kessler, H., Buchner, J., P53-a natural cancer killer: structural insights and therapeutic concepts (2006) Angew Chem Int Ed Eng, 45, pp. 6440-6460
dc.descriptionMaki, C.G., Huibregtse, J.M., Howley, P.M., In vivo ubiquitination and proteasome-mediated degradation of p53 (1996) Cancer Res, 56, pp. 2649-2654
dc.descriptionSoussi, T., The p53 tumor suppressor gene: from molecular biology to clinical investigation (2000) Ann N Y Acad Sci, 910, pp. 121-139
dc.descriptionLin, K., Rockliffe, N., Johnson, G.G., Sherrington, P.D., Pettitt, A.R., Hsp90 inhibition has opposing effects on wild-type and mutant p53 and induces p21 expression and cytotoxicity irrespective of p53/ATM status in chronic lymphocytic leukaemia cellsHsp90 inhibition and p53/ATM status in CLL (2008) Oncogene, 27, pp. 2445-2455
dc.descriptionFukumoto, R., Kiang, J.G., Geldanamycin analog 17-DMAG limits apoptosis in human peripheral blood cells by inhibition of p53 activation and its interaction with heat-shock protein 90kDa after exposure to ionizing radiation (2011) Radiat Res, 176, pp. 333-345
dc.descriptionMollapour, M., Neckers, L., Post-translational modifications of Hsp90 and their contributions to chaperone regulation (2011) Biochim Biophys Acta, , doi: doi:10.1016/j.bbamcr.2011.07.018
dc.descriptionDeZwaan, D.C., Freeman, B.C., HSP90 manages the ends (2010) Trends Biochem Sci, 35, pp. 384-391
dc.descriptionLydall, D., Taming the tiger by the tail: modulation of DNA damage responses by telomeres (2009) EMBO J, 28, pp. 2174-2187
dc.descriptionHolt, S.E., Aisner, D.L., Baur, J., Tesmer, V.M., Dy, M., Ouellette, M., Functional requirement of p23 and Hsp90 in telomerase complexes (1999) Genes Dev, 13, pp. 817-826
dc.descriptionForsythe, H.L., Jarvis, J.L., Turner, J.W., Elmore, L.W., Holt, S.E., Stable association of HSP90 and p23, but not Hsp70, with active human telomerase (2001) J Biol Sci, 276, pp. 15571-15574
dc.descriptionDeZwaan, D.C., Toogun, O.A., Echtenkamp, F.J., Freeman, B.C., The Hsp82 molecular chaperone promotes a switch between unextendable and extendable telomere states (2009) Nat Struct Mol Biol, 16, pp. 711-716
dc.descriptionLaskar, S., Bhattacharyya, M.K., Shankar, R., Bhattacharyya, S., HSP90 controls SIR2 mediated gene silencing (2011) PLoS One, 6, pp. e23406
dc.descriptionBarral, J.M., Hutagalung, A.H., Brinker, A., Hartl, F.U., Epstein, H.F., Role of the myosin assembly protein UNC-45 as a molecular chaperone for myosin (2002) Science, 295, pp. 669-671
dc.descriptionWillis, M.S., Schisler, J.C., Portbury, A.L., Patterson, C., Build it up-tear it down: protein quality control in the cardiac sarcomere (2009) Cardiovasc Res, 81, pp. 439-448
dc.descriptionGaiser, A.M., Kaiser, C.J.O., Haslbeck, V., Richter, K., Downregulation of the Hsp90 system causes defects in muscle cells of Caenorhabditis elegans (2011) PLoS One, 6, pp. e25485
dc.descriptionVoellmy, R., Boellmann, F., Chaperone regulation of the heat shock protein response (2007) Adv Exp Med Biol, 594, pp. 89-99
dc.descriptionJakob, U., Lilie, H., Meyer, I., Buchner, J., Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase. Implications for heat shock in vivo (1995) J Biol Chem, 270, pp. 7288-7294
dc.descriptionFrancis, B.R., Thorsness, P.E., Hsp90 and mitochondrial proteases Yme1 and Yta10/12 participate in ATP synthase assembly in Saccharomyces cerevisiae (2011) Mitochondrion, 1, pp. 587-600
dc.descriptionLees-Miller, S.P., Anderson, C.W., The human double-stranded DNA-activated protein kinase phosphorylates the 90-kDa heat-shock protein, Hsp90α at two NH2-terminal threonine residues (1989) J Biol Chem, 264, pp. 17275-17280
dc.descriptionLees-Miller, S.P., Anderson, C.W., Two human 90-kDa heat shock proteins are phosphorylated in vivo at conserved (1989) J Biol Chem, 264, pp. 2431-2437
dc.descriptionBrouet, A., Sonveaux, P., Dessy, C., Moniotte, S., Balligand, J.L., Feron, O., Hsp90 and caveolin are key targets for the proangiogenic nitric oxide-mediated effects of statins (2001) Circ Res, 89, pp. 866-873
dc.descriptionOgiso, H., Kagi, N., Matsumoto, E., Nishimoto, M., Arai, R., Shirouzu, M., Phosphorylation analysis of 90kDa heat shock protein within the cytosolic aryl-hydrocarbon receptor complex (2004) Biochemistry, 43, pp. 15510-15519
dc.descriptionDuval, M., Le Boeuf, F., Huot, J., Gratton, J.P., Src-mediated phosphorylation of Hsp90 in response to vascular endothelial growth factor (VEGF) is required for VEGF receptor-2 signaling to endothelial NO synthase (2007) Mol Biol Cell, 18, pp. 4659-4668
dc.descriptionKurokawa, M., Zhao, C., Reya, T., Kornbluth, S., Inhibition of apoptosome formation by suppression of Hsp90β phosphorylation in tyrosine kinase-induced leukemias (2008) Mol Cell Biol, 28, pp. 5494-5506
dc.descriptionDeb, T.B., Zuo, A.H., Wang, Y., Barndt, R.J., Cheema, A.K., Sengupta, S., Pnck induces ligand-independent EGFR degradation by probable perturbation of the Hsp90 chaperone complex (2011) Am J Physiol Cell Physiol, 300, pp. 1139-1154
dc.descriptionMollapour, M., Tsutsumi, S., Truman, A.W., Xu, W., Vaughan, C.K., Beebe, K., Threonine 22 phosphorylation attenuates Hsp90 interaction with cochaperones and affects its chaperone activity (2011) Mol Cell, 41, pp. 672-681
dc.descriptionScroggins, B.T., Robzyk, K., Wang, D., Marcu, M.G., Tsutsumi, S., Beebe, K., An acetylation site in the middle domain of Hsp90 regulates chaperone function (2007) Mol Cell, 25, pp. 151-159
dc.descriptionProdromou, C., Pearl, L.H., Structure and functional relationships of Hsp90 (2003) Curr Cancer Drug Targets, 3, pp. 301-323
dc.descriptionYang, Y., Rao, R., Shen, J., Tang, Y., Fiskus, W., Nechtman, J., Role of acetylation and extracellular location of heat shock protein 90α in tumor cell invasion (2008) Cancer Res, 68, pp. 4833-4842
dc.descriptionZhang, Y., Kwon, S., Yamaguchi, T., Cubizolles, F., Rousseaux, S., Kneissel, M., Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally (2008) Mol Cell Biol, 28, pp. 1688-1701
dc.descriptionZhou, Q., Agoston, A.T., Atadja, P., Nelson, W.G., Davidson, N.E., Inhibition of histone deacetylases promotes ubiquitin-dependent proteasomal degradation of DNA methyltransferase 1 in human breast cancer cells (2008) Mol Cancer Res, 6, pp. 873-883
dc.descriptionGao, C., Guo, H., Wei, J., Mi, Z., Wai, P.Y., Kuo, P.C., Identification of S-nitrosylated proteins in endotoxin-stimulated RAW264.7 murine macrophages (2005) Nitric Oxide, 12, pp. 121-126
dc.descriptionMartinez-Ruiz, A., Villanueva, L., Gonzalez De Orduna, C., Lopez-Ferrer, D., Higueras, M.A., Tarin, C., S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities (2005) Proc Natl Acad Sci U S A, 102, pp. 8525-8530
dc.descriptionZhang, Y., Keszler, A., Broniowska, K.A., Hogg, N., Characterization and application of the biotin-switch assay for the identification of S-nitrosated proteins (2005) Free Radic Biol Med, 38, pp. 874-881
dc.descriptionRetzlaff, M., Stahl, M., Eberl, H.C., Lagleder, S., Beck, J., Kessler, H., Hsp90 is regulated by a switch point in the C-terminal domain (2009) EMBO Rep, 10, pp. 1147-1153
dc.descriptionZhao, Y.G., Gilmore, R., Leone, G., Coffey, M.C., Weber, B., Lee, P.W., Hsp90 phosphorylation is linked to its chaperoning function. Assembly of the reovirus cell attachment protein (2001) J Biol Chem, 276, pp. 32822-32827
dc.descriptionMollapour, M., Tsutsumi, S., Neckers, L., Hsp90 phosphorylation, Wee1 and the cell cycle (2010) Cell Cycle, 9, pp. 2310-2316
dc.descriptionMurtagh, J., Lu, H., Schwartz, E.L., Taxotere-induced inhibition of human endothelial cell migration is a result of heat shock protein 90 degradation (2006) Cancer Res, 66, pp. 8192-8199
dc.descriptionTaipale, M., Jarosz, D.F., Lindquist, S., HSP90 at the hub of protein homeostasis: emerging mechanistic insights (2010) Nat Rev Mol Cell Biol, 11, pp. 515-528
dc.descriptionProdromou, C., Siligardi, G., O'Brien, R., Woolfson, D.N., Regan, L., Panaretou, B., Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones (1999) EMBO J, 18, pp. 754-762
dc.descriptionSouthworth, D.R., Agard, D.A., Client-loading conformation of the Hsp90 molecular chaperone revealed in the cryo-EM structure of the human Hsp90:Hop complex (2011) Mol Cell, 42, pp. 771-781
dc.descriptionDas, A.K., Cohen, P.W., Barford, D., The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions (1998) EMBO J, 17, pp. 1192-1199
dc.descriptionCliff, M.J., Williams, M.A., Brooke-Smith, J., Barford, D., Ladbury, J.E., Molecular recognition via coupled folding and binding in a TPR domain (2005) J Mol Biol, 346, pp. 717-732
dc.descriptionCliff, M.J., Harris, R., Barford, D., Ladbury, J.E., Williams, M.A., Conformational diversity in the TPR domain-mediated interaction of protein phosphatase 5 with Hsp90 (2006) Structure, 14, pp. 415-426
dc.descriptionZhang, M., Windheim, M., Roe, S.M., Peggie, M., Cohen, P., Prodromou, C., Chaperoned ubiquitylation-crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIPUbc13-Uev1a complex (2005) Mol Cell, 20, pp. 525-538
dc.descriptionCheung-Flynn, J., Roberts, P.J., Riggs, D.L., Smith, D.F., C-terminal sequences outside the tetratricopeptide repeat domain of FKBP51 and FKBP52 cause differential binding to Hsp90 (2003) J Biol Chem, 278, pp. 17388-17394
dc.descriptionYoung, J.C., Hoogenraad, N.J., Hartl, F.U., Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70 (2003) Cell, 112, pp. 41-50
dc.descriptionLi, J., Qian, X., Hu, J., Sha, B., Molecular chaperone Hsp70/Hsp90 prepares the mitochondrial outer membrane translocon receptor Tom71 for preprotein loading (2009) J Biol Chem, 284, pp. 23852-23859
dc.descriptionJascur, T., Brickner, H., Salles-Passador, I., Barbier, V., El Khissiin, A., Smith, B., Regulation of p21(WAF1/CIP1) stability by WISp39, a Hsp90 binding TPR protein (2005) Mol Cell, 17, pp. 237-249
dc.descriptionMakhnevych, T., Houry, W.A., The role of Hsp90 in protein complex assembly (2011) Biochim Biophys Acta, , doi:10.1016/j.bbamcr.2011.09.001
dc.descriptionCarrello, A., Ingley, E., Minchin, R.F., Tsai, S., Ratajczak, T., The common tetratricopeptide repeat acceptor site for steroid receptor- associated immunophilins and Hop is located in the dimerization domain of Hsp90 (1999) J Biol Chem, 274, pp. 2682-2689
dc.descriptionMayr, C., Richter, K., Lilie, H., Buchner, J., Cpr6 and Cpr7, two closely related Hsp90-associated immunophilins from Saccharomyces cerevisiae, differ in their functional properties (2000) J Biol Chem, 275, pp. 34140-34146
dc.descriptionMeyer, B.K., Perdew, G.H., Characterization of the AhR-hsp90-XAP2 core complex and the role of the immunophilin-related protein XAP2 in AhR stabilization (1999) Biochemistry, 38, pp. 8907-8917
dc.descriptionBoulon, S., Marmier-Gourrier, N., Pradet-Balade, B., Wurth, L., Verheggen, C., Jady, B.E., The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery (2008) J Cell Biol, 180, pp. 579-595
dc.descriptionMillson, S.H., Vaughan, C.K., Zhai, C., Ali, M.M., Panaretou, B., Piper, P.W., Chaperone ligand-discrimination by the TPR-domain protein Tah1 (2008) Biochem J, 413, pp. 261-268
dc.descriptionChadli, A., Graham, J.D., Abel, M.G., Jackson, T.A., Gordon, D.F., Wood, W.M., GCUNC-45 is a novel regulator for the progesterone receptor/hsp90 chaperoning pathway (2006) Mol Cell Biol, 26, pp. 1722-1730
dc.descriptionMillson, S.H., Truman, A.W., King, V., Prodromou, C., Pearl, L.H., Piper, P.W., A two-hibrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p) (2005) Eukaryot Cell, 4, pp. 849-860
dc.descriptionRoe, S.M., Ali, M.M., Meyer, P., Vaughan, C.K., Panaretou, B., Piper, P.W., The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50cdc37 (2004) Cell, 116, pp. 87-98
dc.descriptionZhao, R., Davey, M., Hsu, Y.C., Kaplanek, P., Tong, A., Parsons, A.B., Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone (2005) Cell, 120, pp. 715-727
dc.descriptionJohnson, J.L., Toft, D.O., Binding of p23 and hsp90 during assembly with the progesterone receptor (1995) Mol Endocrinol, 9, pp. 670-678
dc.descriptionSreedhar, A.S., Kalmár, E., Csermely, P., Shen, Y.F., Hsp90 isoforms: functions, expression and clinical importance (2004) FEBS Lett, 562, pp. 11-15
dc.descriptionKoulov, A.V., Lapointe, P., Lu, B., Razvi, A., Coppinger, J., Dong, M.Q., Biological and structural basis for Aha1 regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis (2010) Mol Biol Cell, 21, pp. 871-884
dc.descriptionAdwan, T.S., Ohm, A.M., Jones, D.M.N., Humphries, M.J., Reyland, M.E., Regulated binding of importin-α to PKCδ in response to apoptotic signals facilitates nuclear import (2011) JBC, 286, pp. 35716-35724
dc.descriptionHa, K., Fiskus, W., Rao, R., Balusu, R., Venkannagari, S., Nalabothula, N.R., Hsp90 inhibitor-mediated disruption of chaperone association of ATR with Hsp90 sensitizes cancer cells to DNA damage (2011) Mol Cancer Ther, 10, pp. 1194-1206
dc.descriptionKim, Y.M., Pyo, H., Cooperative enhancement of radiosensitivity after combined treatment of 17-(allylamino)-17-demethoxygeldanamycin and celecoxib in human lung and colon cancer cell lines (2012) DNA Cell Biol, 31, pp. 15-29
dc.descriptionJoo, J.H., Dorsey, F.C., Joshi, A., Hennessy-Walters, K.M., Rose, K.L., McCastlain, K., Hsp90-Cdc37 chaperone complex regulates Ulk1- and Atg13-mediated mitophagy (2011) Mol Cell, 43, pp. 572-585
dc.descriptionFukushima, T., Okajima, H., Yamanaka, D., Ariga, M., Nagata, S., Ito, A., HSP90 interacting with IRS-2 is involved in cAMP-dependent potentiation of IGF-I signals in FRTL-5 cells (2011) Mol Cell Endocrinol, 344, pp. 81-89
dc.descriptionKnobbe, C., Revett, T., Bai, Y., Chow, V., Jeon, A.H.W., Bohm, C., Choice of bioloical source material supersedes oxidative stress in its influence on DJ-1 in vivo interactions with Hsp90 (2011) J Proteome Res, 10, pp. 4388-4404
dc.descriptionJin, Y., Zhen, Y., Haugsten, E.M., Wiedlocha, A., The driver of malignancy in KG-1a leukemic cells, FGFR1OP2-FGFR1, encodes an HSP90 addicted oncoprotein (2011) Cell Signal, 23, pp. 1758-1766
dc.descriptionWang, T., Zhang, M., Ma, Z., Guo, K., Tergaonkar, V., Zeng, Q., Hong, W., A role of Rab7 in stabilizing EGFR-Her2 and in sustaining Akt survival signal (2011) J Cell Physiol, , doi:10.1002/jcp.23023
dc.descriptionKim, Y.J., Lee, S.A., Myung, S.C., Kim, W., Lee, C.S., Radicicol, an inhibitor of Hsp90, enhances TRAIL-induced apoptosis in human epithelial ovarian carcinoma cells by promoting activation of apoptosis-related proteins (2012) Mol Cell Biochem, 359, pp. 33-43
dc.descriptionChen, B., Piel, W.H., Gui, L., Bruford, E., Monteiro, A., The HSP90 family of genes in the human genome: insights into their divergence and evolution (2005) Genomics, 86, pp. 627-637
dc.descriptionKekatpure, V.D., Dannenberg, A.J., Subbaramaiah, K., HDAC6 modulates Hsp90 chaperone activity and regulates activation of aryl hydrocarbon receptor signaling (2009) J Biol Chem, 284, pp. 7436-7445
dc.descriptionCarbone, D.L., Doorn, J.A., Kiebler, Z., Ickes, B.R., Petersen, D.R., Modification of heat shock protein 90 by 4-hydroxynonenal in a rat model of chronic alcoholic liver disease (2005) J Pharmacol Exp Ther, 315, pp. 8-15
dc.descriptionKundrat, L., Regan, L., Identification of residues on Hsp70 and Hsp90 ubiquitinated by the cochaperone CHIP (2010) J Mol Biol, 395, pp. 587-594
dc.descriptionMollapour, M., Tsutsumi, S., Donnelly, A.C., Beebe, K., Tokita, M.J., Lee, M.J., Swe1Wee1-dependent tyrosine phosphorylation of Hsp90 regulates distinct facets of chaperone function (2010) Mol Cell, 37, pp. 333-343
dc.descriptionBennetzen, M.V., Larsen, D.H., Bunkenborg, J., Bartek, J., Lukas, J., Andersen, J.S., Site-specific phosphorylation dynamics of the nuclear proteome during the DNA damage response (2010) Mol Cell Proteomics, 9, pp. 1314-1323
dc.descriptionWang, Z., Gucek, M., Hart, G.W., Cross-talk between GlcNAcyla
dc.descriptionHoffmann, T., Hovemann, B., Heat-shock proteins, Hsp84 and Hsp86, of mice and men: two related genes encode formerly identified tumour-specific transplantation antigens (1988) Gene, 74, pp. 491-501
dc.descriptionChen, B., Piel, W.H., Gui, L., Bruford, E., Monteiro, A., The HSP90 family of genes in the human genome: insights into their divergence and evolution (2005) Genomics, 86, pp. 627-637
dc.descriptionEustace, B.K., Sakurai, T., Stewart, J.K., Yimlamai, D., Unger, C., Zehetmeier, C., Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness (2004) Nat Cell Biol, 6, pp. 507-514
dc.descriptionRichter, K., Buchner, J., Hsp90: twist and fold (2006) Cell, 127, pp. 251-253
dc.descriptionPearl, L.H., Prodromou, C., Structure and mechanism of the Hsp90 molecular chaperone machinery (2006) Annu Rev Biochem, 75, pp. 271-294
dc.descriptionAli, M.M., Roe, S.M., Vaughan, C.K., Meyer, P., Panaretou, B., Piper, P.W., Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex (2006) Nature, 440, pp. 1013-1017
dc.descriptionMayer, M.P., Gymnastics of Molecular Chaperones, Mol (2010) Cell, 39, pp. 321-331
dc.descriptionKrukenberg, K.A., Street, T.O., Lavery, L.A., Agard, D.A., Conformational dynamics of the molecular chaperone Hsp90 (2011) Q Rev Biophys, 44, pp. 229-255
dc.descriptionChiosis, G., Vilenchik, M., Kim, J., Solit, D., Hsp90: the vulnerable chaperone (2004) Drug Discov Today, 9, pp. 881-888
dc.descriptionJohnson, J.L., Brown, C., Plasticity of the Hsp90 chaperone machine in divergent eukaryotic organisms (2009) Cell Stress Chaperones, 14, pp. 83-94
dc.descriptionRussell, L.C., Whitt, S.R., Chen, M.S., Chinkers, M., Identification of conserved residues required for the binding of a tetratricopeptide repeat domain to heat shock protein 90 (1999) J Biol Chem, 274, pp. 20060-20063
dc.descriptionOdunuga, O.O., Longshaw, V.M., Blatch, G.L., Hop: more than an Hsp70/Hsp90 adaptor protein (2004) Bioessays, 26, pp. 1058-1068
dc.descriptionMurata, S., Chiba, T., Tanaka, K., CHIP: a quality-control E3 ligase collaborating with molecular chaperones (2003) Int J Biochem Cell Biol, 35, pp. 572-578
dc.descriptionYang, J., Roe, S.M., Cliff, M.J., Williams, M.A., Ladbury, J.E., Cohen, P.T., Molecular basis for TPR domain-mediated regulation of protein phosphatase 5 (2005) EMBO J, 24, pp. 1-10
dc.descriptionFan, A.C., Young, J.C., Function of cytosolic chaperones in Tom70-mediated mitochondrial import (2011) Protein Pept Lett, 18, pp. 122-131
dc.descriptionMiyata, Y., Chambraud, B., Radanyi, C., Leclerc, J., Lebeau, M.C., Renoir, J.M., Phosphorylation of the immunosuppressant FK506-binding protein FKBP52 by casein kinase II: regulation of HSP90-binding activity of FKBP52 (1997) Proc Natl Acad Sci U S A, 94, pp. 14500-14505
dc.descriptionLongshaw, V.M., Dirr, H.W., Blatch, G.L., Lässle, M., The in vitro phosphorylation of the co-chaperone mSTI1 by cell cycle kinases substantiates a predicted casein kinase II-p34cdc2-NLS (CcN) motif (2000) Biol Chem, 381, pp. 1133-1138
dc.descriptionKobayashi, T., Nakatani, Y., Tanioka, T., Tsujimoto, M., Nakajo, S., Nakaya, K., Regulation of cytosolic prostaglandin E synthase by phosphorylation (2004) Biochem J, 381, pp. 59-69
dc.descriptionJohnson, B.D., Schumacher, R.J., Ross, E.D., Toft, D.O., Hop modulates Hsp70/Hsp90 interactions in protein folding (1998) J Biol Chem, 273, pp. 3679-3686
dc.descriptionGrenert, J.P., Johnson, B.D., Toft, D.O., The importance of ATP binding and hydrolysis by hsp90 in formation and function of protein heterocomplexes (1999) J Biol Chem, 274, pp. 17525-17533
dc.descriptionWegele, H., Wandinger, S.K., Schmid, A.B., Reinstein, J., Buchner, J., Substrate transfer from the chaperone Hsp70 to Hsp90 (2006) J Mol Biol, 356, pp. 802-811
dc.descriptionScheufler, C., Brinker, A., Bourenkov, G., Pegoraro, S., Moroder, L., Bartunik, H., Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine (2000) Cell, 101, pp. 199-210
dc.descriptionOnuoha, S.C., Coulstock, E.T., Grossmann, J.G., Jackson, S.E., Structural studies on the co-chaperone Hop and its complexes with Hsp90 (2008) J Mol Biol, 379, pp. 732-744
dc.descriptionGonçalves, D.C., Gava, L.M., Ramos, C.H.I., Human Hsp70/Hsp90 organizing protein (Hop) D456G is a mixture of monomeric and dimeric species (2010) Protein Pept Lett, 17, pp. 492-498
dc.descriptionYi, F., Doudevski, I., Regan, L., HOP is a monomer: investigation of the oligomeric state of the co-chaperone HOP (2010) Protein Sci, 19, pp. 19-25
dc.descriptionEbong, I.O., Morgner, N., Zhou, M., Saraiva, M.A., Daturpalli, S., Jackson, S.E., Heterogeneity and dynamics in the assembly of the Heat Shock Protein 90 chaperone complexes (2011) Proc Natl Acad Sci U S A, 108, pp. 17939-17944
dc.descriptionGava, L.M., Gonçalves, D.C., Borges, J.C., Ramos, C.H.I., Stoichiometry and thermodynamics of the interaction between the C-terminus of human 90kDa heat shock protein Hsp90 and the mitochondrial translocase of outer membrane Tom70 (2011) Arch Biochem Biophys, 513, pp. 119-125
dc.descriptionCortajarena, A.L., Yi, F., Regan, L., Designed TPR modules as novel anticancer agents (2008) ACS Chem Biol, 3, pp. 161-166
dc.descriptionYi, F., Regan, L., A novel class of small molecule inhibitors of Hsp90 (2008) ACS Chem Biol, 3, pp. 645-654
dc.descriptionPimienta, G., Herbert, K.M., Regan, L., A compound that inhibits the HOP-Hsp90 complex formation and has unique killing effects in breast cancer cell lines (2011) Mol Pharmacol, 8, pp. 2252-2261
dc.descriptionWalsh, N., Larkin, A.M., Swan, N., Conlon, K., Dowling, P., McDermott, R., RNAi knockdown of Hop (Hsp70/Hsp90 organising protein) decreases invasion via MMP-2 down regulation (2011) Cancer Lett, 306, pp. 180-189
dc.descriptionConnell, P., Ballinger, C.A., Jiang, J., Wu, Y., Thompson, L.J., Hohfeld, J., The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins (2001) Nat Cell Biol, 3, pp. 93-96
dc.descriptionZhou, P., Fernandes, N., Dodge, I.L., Reddi, A.L., Rao, N., Safran, H., ErbB2 degradation mediated by the co-chaperone protein CHIP (2003) J Biol Chem, 278, pp. 13829-13837
dc.descriptionZhang, L., Nephew, K.P., Gallagher, P.J., Regulation of death-associated protein kinase. Stabilization by HSP90 heterocomplexes (2007) J Biol Chem, 282, pp. 11795-11804
dc.descriptionKajiro, M., Hirota, R., Nakajima, Y., Kawanowa, K., So-ma, K., Ito, I., The ubiquitin ligase CHIP acts as an upstream regulator of oncogenic pathways (2009) Nat Cell Biol, 11, pp. 312-319
dc.descriptionYan, S., Sun, X., Xiang, B., Cang, H., Kang, X., Chen, Y., Redox regulation of the stability of the SUMO protease SENP3 via interactions with CHIP and Hsp90 (2010) EMBO J, 29, pp. 3773-3786
dc.descriptionMclaughlin, S.H., Sobott, F., Yao, Z.P., Zhang, W., Nielsen, P.R., Grossmann, J.G., The co- chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins (2006) J Mol Biol, 356, pp. 746-758
dc.descriptionPanaretou, B., Siligardi, G., Meyer, P., Maloney, A., Sullivan, J.K., Singh, S., Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone Aha1 (2002) Mol Cell, 10, pp. 1307-1318
dc.descriptionMeyer, P., Prodromou, C., Liao, C., Hu, B., Roe, S.M., Vaughan, C.K., Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery (2004) EMBO J, 23, pp. 511-519
dc.descriptionHarst, A., Lin, H., Obermann, W.M., Aha1 competes with Hop, p50 and p23 for binding to the molecular chaperone Hsp90 and contributes to kinase and hormone receptor activation (2005) Biochem J, 387, pp. 789-796
dc.descriptionRetzlaff, M., Hagn, F., Mitschke, L., Hessling, M., Gugel, F., Kessler, H., Asymmetric activation of the hsp90 dimer by its cochaperone Aha1 (2010) Mol Cell, 37, pp. 344-354
dc.descriptionHolmes, J.L., Sharp, S.Y., Hobbs, S., Workman, P., Silencing of HSP90 cochaperone AHA1 expression decreases client protein activation and increases cellular sensitivity to the HSP90inhibitor 17-allylamino-17-demethoxygeldanamycin (2008) Cancer Res, 68, pp. 1188-1197
dc.descriptionMandal, A.K., Lee, P., Chen, J.A., Nillegoda, N., Heller, A., DiStasio, S., Cdc37 has distinct roles in protein kinase quality control that protect nascent chains from degradation and promote posttranslational maturation (2007) J Cell Biol, 176, pp. 319-328
dc.descriptionSmith, J.R., Workman, P., Targeting CDC37: an alternative, kinase-directed strategy for disruption of oncogenic chaperoning (2009) Cell Cycle, 8, pp. 362-372
dc.descriptionZhang, T., Hamza, A., Cao, X., Wang, B., Yu, S., Zhan, C.G., A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells (2008) Mol Cancer Ther, 7, pp. 162-170
dc.descriptionWandinger, S.K., Suhre, M.H., Wegele, H., Buchner, J., The phosphatase Ppt1 is a dedicated regulator of the molecular chaperone Hsp90 (2006) EMBO J, 25, pp. 367-376
dc.descriptionVaughan, C.K., Mollapour, M., Smith, J.R., Truman, A., Hu, B., Good, V.M., Hsp90-dependent activation of protein kinases is regulated by chaperone-targeted dephosphorylation of Cdc37 (2008) Mol Cell, 31, pp. 886-895
dc.descriptionJeong, H., Mason, S.P., Barabasi, A.L., Oltvai, Z.N., Lethality and centrality in protein networks (2001) Nature, 411, pp. 41-42
dc.descriptionHigurashi, M., Ishida, T., Kinoshita, K., Identification of transient hub proteins and the possible structural basis for their multiple interactions (2008) Protein Sci, 17, pp. 72-78
dc.descriptionEkman, D., Light, S., Björklund, A.K., Elofsson, A., What properties characterize the hub proteins of the protein-protein interaction network of Saccharomyces cerevisiae? (2006) Genome Biol, 7, pp. R45
dc.descriptionZhao, R., Davey, M., Hsu, Y.C., Kaplanek, P., Tong, A., Parsons, A.B., Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone (2005) Cell, 120, pp. 715-727
dc.descriptionBatada, N.N., Hurst, L.D., Tyers, M., Evolutionary and physiological importance of hub proteins (2006) PLoS Comput Biol, 2, pp. e88
dc.descriptionPatil, A., Nakamura, H., Disordered domains and high surface charge confer hubs with the ability to interact with multiple proteins in interaction networks (2006) FEBS Lett, 580, pp. 2041-2045
dc.descriptionMcClellan, A.J., Xia, Y., Deutschbauer, A.M., Davis, R.W., Gerstein, M., Frydman, J., Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches (2007) Cell, 13, pp. 1121-1135
dc.descriptionWorkman, P., Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone (2004) Cancer Lett, 206, pp. 149-157
dc.descriptionSharp, S., Workman, P., Inhibitors of the HSP90 molecular chaperone: current status (2006) Adv Cancer Res, 95, pp. 323-348
dc.descriptionNeckers, L., Heat shock protein 90: the cancer chaperone (2007) J Biosci, 32, pp. 517-530
dc.descriptionPearl, L.H., Prodromou, C., Workman, P., The Hsp90 molecular chaperone: an open and shut case for treatment (2008) Biochem J, 410, pp. 439-453
dc.descriptionGava, L., Ramos, C.H.I., Human 90kDa heat shock protein Hsp90 as a target for cancer therapeutics (2009) Curr Chem Biol, 3, pp. 330-341
dc.descriptionHanahan, D., Weinberg, R.A., The hallmarks of cancer (2000) Cell, 100, pp. 57-70
dc.descriptionHanahan, D., Weinberg, R.A., Hallmarks of cancer: the next generation (2011) Cell, 144, pp. 646-674
dc.descriptionWhitesell, L., Bagatell, R., Falsey, R., The stress response: implications for the clinical development of hsp90 inhibitors (2003) Curr Cancer Drug Targets, 3, pp. 349-358
dc.descriptionKamal, A., Thao, L., Sensintaffar, J., Zhang, L., Boehm, M.F., Fritz, L.C., A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors (2003) Nature, 425, pp. 407-410
dc.descriptionTaldone, T., Chiosis, G., Purine-scaffold Hsp90 inhibitors (2009) Curr Top Med Chem, 9, pp. 1436-1446
dc.descriptionSalminen, A., Ojala, J., Kaarniranta, K., Hiltunen, M., Soininen, H., Hsp90 regulates tau pathology through co-chaperone complexes in Alzheimer's disease (2011) Prog Neurobiol, 93, pp. 99-110
dc.descriptionShonhai, A., Maier, A.G., Przyborski, J.M., Blatch, G.L., Intracellular protozoan parasites of humans: the role of molecular chaperones in development and pathogenesis (2011) Protein Pept Lett, 18, pp. 143-157
dc.descriptionCowen, L.E., Singh, S.D., Köhler, J.R., Collins, C., Zaas, A.K., Schell, W.A., Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease (2009) Proc Natl Acad Sci U S A, 106, pp. 2818-2823
dc.descriptionChase, G., Deng, T., Fodor, E., Leung, B.W., Mayer, D., Schwemmle, M., Hsp90 inhibitors reduce influenza virus replication in cell culture (2008) Virology, 377, pp. 431-439
dc.descriptionBrugge, J.S., Interaction of the Rous sarcoma virus protein pp 60v-src with the cellular proteins pp50 and pp90 (1986) Curr Top Microbiol Immunol, 123, pp. 1-22
dc.descriptionXu, Y., Lindquist, S., Heat-shock protein Hsp90 governs the activity of pp 60v-src kinase (1993) Proc Natl Acad Sci U S A, 90, pp. 7074-7078
dc.descriptionDi Cosimo, S., Baselga, J., Targeted therapies in breast cancer: where are we now? (2008) Eur J Cancer, 44, pp. 2781-2790
dc.descriptionYarden, Y., Kuang, W.J., Yang-Feng, T., Coussens, L., Munemitsu, S., Dull, T.J., Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand (1987) EMBO J, 6, pp. 3341-3351
dc.descriptionMatthews, W., Jordan, C.T., Wiegand, G.W., Pardoll, D., Lemischka, I.R., A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched populations (1991) Cell, 65, pp. 1143-1152
dc.descriptionFuritsu, T., Tsujimura, T., Tono, T., Ikeda, H., Kitayama, H., Koshimizu, U., Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of c-kit product (1993) J Clin Invest, 92, pp. 1736-1744
dc.descriptionHirota, S., Isozaki, K., Moriyama, Y., Hashimoto, K., Nishida, T., Ishiguro, S., Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors (1998) Science, 279, pp. 577-580
dc.descriptionFumo, G., Akin, C., Metcalfe, D.D., Neckers, L., 17-Allylamino-17-demethoxygeldanamycin (17-AAG) is effective in downregulating mutated, constitutively activated KIT protein in human mast cells (2004) Blood, 103, pp. 1078-1084
dc.descriptionBanerji, U., O'Donnell, A., Scurr, M., Pacey, S., Stapleton, S., Asad, Y., Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies (2005) J Clin Oncol, 23, pp. 4152-4161
dc.descriptionDias, S.R., Friedlos, F., Light, Y., Springer, C., Workman, P., Marais, R., Activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin (2005) Cancer Res, 65, pp. 10686-10691
dc.descriptionGrbovic, O.M., Basso, A.D., Sawai, A., Ye, Q., Friedlander, P., Solit, D., V600E BRaf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors (2006) Proc Natl Acad Sci U S A, 103, pp. 57-62
dc.descriptionFukuyo, Y., Inoue, M., Nakajima, T., Higashikubo, R., Horikoshi, N.T., Hunt, C., Oxidative stress plays a critical role in inactivating mutant BRAF by geldanamycin derivatives (2008) Cancer Res, 68, pp. 6324-6330
dc.descriptionMehta, P.P., Kung, P., Yamazaki, S., Walls, M., Shen, A., Nguyen, L., A novel class of specific Hsp90 small molecule inhibitors demonstrate in vitro and in vivo anti-tumor activity in human melanoma cells (2011) Cancer Lett, 300, pp. 30-39
dc.descriptionLewis, J., Devin, A., Miller, A., Lin, Y., Rodriguez, Y., Neckers, L., Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation (2000) J Biol Chem, 275, pp. 10519-10526
dc.relationJournal of Proteomics
dc.rightsfechado
dc.sourceScopus
dc.titleThe Network Interaction Of The Human Cytosolic 90kda Heat Shock Protein Hsp90: A Target For Cancer Therapeutics
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución