dc.creatorAlvarez J.C.
dc.creatorMoraes M.H.
dc.creatorGarcia O.
dc.creatorPereira G.A.G.
dc.creatorMondego J.M.C.
dc.date2012
dc.date2015-06-25T20:25:54Z
dc.date2015-11-26T15:23:05Z
dc.date2015-06-25T20:25:54Z
dc.date2015-11-26T15:23:05Z
dc.date.accessioned2018-03-28T22:32:09Z
dc.date.available2018-03-28T22:32:09Z
dc.identifier9781621005049
dc.identifierAuxins: Structure, Biosynthesis And Functions. Nova Science Publishers, Inc., v. , n. , p. 31 - 51, 2012.
dc.identifier
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84892032204&partnerID=40&md5=0f9f514fbc7483828679af7631943041
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/90568
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/90568
dc.identifier2-s2.0-84892032204
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1260455
dc.descriptionAmong all the phytohormones, auxin likely plays the most roles in plant physiology. With an intricate biosynthesis pathway and a complex gene signaling cascade, auxin is involved in many biological processes, including plant growth and responses against potential pathogens. It has been extensively documented that some microorganisms are capable of synthesizing this phytohormone, especially indole-3-acetic acid (IAA), the major naturally occurring auxin. In an environmental scenario consisting of bacteria and fungi interacting with plants, the production of auxin by such microorganisms may lead to hormonal imbalances in the host. This disturbance in plant hormonal status can modulate plant metabolism and defense systems, favoring symbiosis or pathogenesis. The basic mechanism of IAA as a modulator of plant gene expression is well understood, and new evidence about the mechanisms by which microbes affect plant auxin activities is now emerging. This review focuses on the effects of auxins produced by microorganisms during plant-microbe interactions. The routes of auxin biosynthesis in bacteria and fungi are described for some organisms. We also give examples of the effects of microbe-produced auxin in symbiotic and pathogenic events and describe how plants modulate IAA signaling to counteract infection by biotrophic pathogens. © 2012 Nova Science Publishers, Inc. All rights reserved.
dc.description
dc.description
dc.description31
dc.description51
dc.descriptionAbreu, M.E., Munné-Bosch, S., Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana (2009) Journal of Experimental Botany, 60, pp. 1261-1271
dc.descriptionArteca, R.N., Arteca, J.M., Effects of brassinosteroid, auxin, and cytokinin on ethylene production in Arabidopsis thaliana plants (2008) Journal of Experimental Botany, 59, pp. 3019-3026
dc.descriptionBari, R., Jones, J.D., Role of plant hormones in plant defence responses (2009) Plant Mol Biol, 69, pp. 473-488
dc.descriptionBarker, S.J., Tagu, D., The Roles of Auxins and Cytokinins in Mycorrhizal Symbioses (2000) Journal of Plant Growth Regulation, 19, pp. 144-154
dc.descriptionBashan, Y., Holguin, G., Azospirillum-plant relationships: environmental and physiological advances (1990-1996) (1997) Canadian Journal of Microbiology, 43, pp. 103-121
dc.descriptionBasse, C.W., Lottspeich, F., Steglich, W., Kahmann, R., Two potential indole-3-acetaldehyde dehydrogenases in the phytopathogenic fungus Ustilago maydis (1996) European Journal of Biochemistry, 242, pp. 648-656
dc.descriptionBerg, G., Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture (2009) Applied Microbiology and Biotechnology, 84, pp. 11-18
dc.descriptionBianco, C., Imperlini, E., Calogero, R., Senatore, B., Amoresano, A., Carpentieri, A., Pucci, P., Defez, R., Indole-3-acetic acid improves Escherichia coli defences to stress (2006) Archives of Microbiology, 185, pp. 373-382
dc.descriptionBölker, M., Basse, C.W., Schirawski, J., Ustilago maydis secondary metabolism-from genomics to biochemistry (2008) Fungal Genetics and Biology, 45 (SUPPL. 1), pp. S88-93
dc.descriptionCernadas, R.A., Camillo, L.R., Benedetti, C.E., Transcriptional analysis of the sweet orange interaction with the citrus canker pathogens Xanthomonas axonopodis pv. citri and Xanthomonas axonopodis pv. aurantifolii (2008) Molecular Plant Pathology, 9, pp. 609-631
dc.descriptionChung, K.R., Shilts, T., Ertürk, U., Timmer, L.W., Ueng, P.P., Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus (2003) FEMS Microbiology Letters, 226, pp. 23-30
dc.descriptionDarwin, C., The power of movement in plants (1880), London: John MurrayDing, X., Cao, Y., Huang, L., Zhao, J., Xu, C., Li, X., Wang, S., Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate-and jasmonate-independent basal immunity in rice (2008) The Plant Cell, 20, pp. 228-240
dc.descriptionDobbelaere, S., Croonenborghs, A., Thys, A., Vande Broek, A., Vanderleyden, J., Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat (1999) Plant and Soil, 212, pp. 155-164
dc.descriptionFelten, J., Kohler, A., Morin, E., Bhalerao, R.P., Palme, K., Martin, F., Ditengou, F.A., Legué, V., The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling (2009) Plant Physiology, 151, pp. 1991-2005
dc.descriptionFelten, J., Legué, V., Ditengou, F.A., Lateral root stimulation in the early interaction between Arabidopsis thaliana and the ectomycorrhizal fungus Laccaria bicolor is fungal auxin the trigger? (2010) Plant Signaling and Behavior, 5, pp. 864-867
dc.descriptionFu, J., Liu, H., Li, Y., Yu, H., Li, X., Xiao, J., Wang, S., Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice (2011) Plant Physiology, 155, pp. 589-602
dc.descriptionFukuhara, H., Minakawa, Y., Akao, S., Minamisawa, K., The involvement of indole-3-acetic acid produced by Bradyrhizobium elkanii in nodule formation (1994) Plant Cell and Physiology, 35, pp. 1261-1265
dc.descriptionGhosh, S., Basu, P.S., Production and metabolism of indole acetic acid in roots and root nodules of Phaseolus mungo (2006) Microbiological Research, 161, pp. 362-366
dc.descriptionGruen, H.E., Auxins and fungi (1959) Annual Review of Plant Physiology, 10, pp. 405-440
dc.descriptionGrunewald, W., Cannoot, B., Friml, J., Gheysen, G., Parasitic nematodes modulate PIN-mediated auxin transport to facilitate infection (2009) PLoS Pathogens, 5 (1), pp. e1000266
dc.descriptionKämper, J., Kahmann, R., Bölker, M., Ma, L.J., Brefort, T., Saville, B.J., Banuett, F., Birren, B.W., Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis (2006) Nature, 444, pp. 97-101
dc.descriptionKarabaghli, C., Frey-Klett, P., Sotta, B., Bonnet, M., Le Tacon, F., Vitro effects of Laccaria bicolor S238N and Pseudomonas fluorescens strain BBc6 on rooting of de-rooted shoot hypocotyls of Norway spruce (1998) Tree Physiology, 18, pp. 103-111
dc.descriptionKazan, K., Manners, J.M., Linking development to defense: auxin in plant-pathogen interactions (2009) Trends in Plant Science, 14, pp. 373-382
dc.descriptionKilaru, A., Bailey, B.A., Hasenstein, K.H., Moniliophthora perniciosa produces hormones and alters endogenous auxin and salicylic acid in infected cocoa leaves (2007) FEMS Microbiology Letters, 274, pp. 238-244
dc.descriptionKunkel, B.N., Brooks, D.M., Cross talk between signaling pathways in pathogen defense (2002) Current Opinion in Plant Biology, 5, pp. 325-331
dc.descriptionLambrecht, M., Okon, Y., Vande Broek, A., Vanderleyden, J., Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions (2000) Trends in Microbiology, 8, pp. 298-300
dc.descriptionLiu, P., Nester, E.W., Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58 (2006) Proceedings of the National Academy of Sciences of the United States of America, 103, pp. 4658-4662
dc.descriptionLlorente, F., Muskett, P., Sánchez-Vallet, A., López, G., Ramos, B., Sánchez-Rodríguez, C., Jordá, L., Molina, A., Repression of the auxin response pathway increases Arabidopsis susceptibility to necrotrophic fungi (2008) Molecular Plant, 1, pp. 496-509
dc.descriptionLópez, M.A., Bannenberg, G., Castresana, C., Controlling hormone signaling is a plant and pathogen challenge for growth and survival (2008) Current Opinion in Chemical Biology, 11, pp. 420-427
dc.descriptionMaor, R., Haskin, S., Levi-Kedmi, H., Sharon, A., Planta production of indole-3-acetic acid by Colletotrichum gloeosporioides f. sp. aeschynomene (2004) Applied and Environmental Microbiology, 70, pp. 1852-1854
dc.descriptionMarois, E., Van den Ackerveken, G., Bonas, U., The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host (2002) Molecular Plant Microbe Interactions, 15, pp. 637-646
dc.descriptionMathesius, U., Auxin: at the root of nodule development? (2008) Functional Plant Biology, 35, pp. 651-668
dc.descriptionMcQueen-Mason, S., Durachko, D.M., Cosgrove, D.J., Two endogenous proteins that induce cell wall extension in plants (1992) The Plant Cell, 4, pp. 1425-1433
dc.descriptionMondego, J.M., Carazzolle, M.F., Costa, G.G., Formighieri, E.F., Parizzi, L.P., Rincones, J., Cotomacci, C., Pereira, G.A., A genome survey of Moniliophthora perniciosa gives new insights into Witches' Broom Disease of cacao (2008) BMC Genomics, 9, p. 548
dc.descriptionNavarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., Jones, J.D., A plant miRNA contributes to antibacterial resistance by repressing auxin signaling (2006) Science, 312, pp. 436-439
dc.descriptionNielsen, N., Materials which hasten the growth of Avena coleoptiles (1928) Planta, 6, pp. 376-378
dc.descriptionNormanly, J., Approaching cellular and molecular resolution of auxin biosynthesis and metabolism (2010) Cold Spring Harbor Perspectives in Biology, 2 (1), pp. a001594
dc.descriptionPark, J.-E., Park, J.-Y., Kim, Y.-S., Staswick, P.E., Jeon, J., Yun, J., Kim, S.-Y., Park, C.-M., GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis (2007) The Journal of Biological Chemistry, 282, pp. 10036-10046
dc.descriptionPatten, C.L., Glick, B.R., Bacterial biosynthesis of indole-3-acetic acid (1996) Canadian Journal of Microbiology, 42 (3), pp. 207-220
dc.descriptionPerley, J.E., Stowe, B.B., On the ability of Taphrina deformans to produce indoleacetic acid from tryptophan by way of tryptamine (1966) Plant Physiology, 41, pp. 234-237
dc.descriptionPersello-Cartieaux, F., Nussaume, L., Robaglia, C., Tales from the underground: molecular plant-rhizobacteria interactions (2003) Plant, Cell and Environment, 26, pp. 189-199
dc.descriptionPii, Y., Crimi, M., Cremonese, G., Spena, A., Pandolfini, T., Auxin and nitric oxide control indeterminate nodule formation (2007) BMC Plant Biology, 7, p. 21
dc.descriptionPrusty, R., Hunter, A., Kashpur, O., Normanly, J., Aberrant synthesis of Indole-3-acetic Acid in Saccharomyces cerevisiae triggers morphogenic transition, a virulence trait of pathogenic fungi (2010) Genetics, 220, pp. 211-220
dc.descriptionPrusty, R., Grisafi, P., Fink, G.R., The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae (2004) Proceedings of the National Academy of Sciences of the United States of America, 101, pp. 4153-4157
dc.descriptionReineke, G., Heinze, B., Schirawski, J., Buettner, R., Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue (2008) Molecular Plant Pathology, 9, pp. 339-355
dc.descriptionRemans, R., Spaepen, S., Vanderleyden, J., Auxin signaling in plant defense (2006) Science, 313, p. 171
dc.descriptionRobert-Seilaniantz, A., Navarro, L., Bari, R., Jones, J.D.G., Pathological hormone imbalances (2007) Current Opinion in Plant Biology, 10, pp. 372-379
dc.descriptionRobinette, D., Matthysse, A.G., Inhibition by Agrobacterium tumefaciens and Pseudomonas savastanoi of development of the hypersensitive response elicited by Pseudomonas syringae pv. phaseolicola (1990) Journal of Bacteriology, 172, pp. 5742-5749
dc.descriptionRobinson, M., Riov, J., Sharon, A., Indole-3-acetic acid biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene (1998) Applied and Environmental Microbiology, 64, pp. 5030-5032
dc.descriptionSantner, A., Calderon-Villalobos, L., Estelle, M., Plant hormones are versatile chemical regulators of plant growth (2009) Nature Chemical Biology, 5, pp. 301-307
dc.descriptionSpaepen, S., Vanderleyden, J., Auxin and plant-microbe interactions (2011) Cold Spring Harbor Perspectives in Biology, 1 (4), p. 3
dc.descriptionSpaepen, S., Vanderleyden, J., Remans, R., Indole-3-acetic acid in microbial and microorganism-plant signaling (2007) FEMS Microbiological Reviews, 31, pp. 425-448
dc.descriptionSplivallo, R., Fischer, U., Göbel, C., Feussner, I., Karlovsky, P., Truffles regulate plant root morphogenesis via the production of auxin and ethylene (2009) Plant Physiology, 150, pp. 2018-2029
dc.descriptionStaswick, P.E., Serban, B., Rowe, M., Tiryaki, I., Maldonado, M.T., Maldonado, M.C., Suza, W., Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid (2005) The Plant Cell, 17, pp. 616-627
dc.descriptionSteenhoudt, O., Vanderleyden, J., Azospirillum, a free living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects (2000) FEMS Microbiological Reviews, 24, pp. 487-506
dc.descriptionStepanova, A.N., Robertson-Hoyt, J., Yun, J., Benavente, L.M., Xie, D.-Y., Dolezal, K., Schlereth, A., Alonso, J.M., TAA1-Mediated Auxin Biosynthesis Is Essential for Hormone Crosstalk and Plant Development (2008) Cell, 133, pp. 177-191
dc.descriptionTanaka, E., Tanaka, C., Ishihara, A., Kuwahara, Y., Tsuda, M., Indole-3-acetic acid biosynthesis in Aciculosporium take, a causal agent of witches' broom of bamboo (2003) Journal of General Plant Pathology, 69, pp. 1-6
dc.descriptionTiryaki, I., Staswick, P.E., An Arabidopsis Mutant Defective in Jasmonate Response Is Allelic to the Auxin-Signaling Mutant axr1 (2002) Plant Physiology, 130, pp. 887-894
dc.descriptionvan Noorden, G.E., Kerim, T., Goffard, N., Wiblin, R., Pellerone, F.I., Rolfe, B.G., Mathesius, U., Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti (2007) Plant Physiology, 144, pp. 1115-1131
dc.descriptionVande Broek, A., Lambrecht, M., Eggermont, K., Vanderleyden, J., Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense (1999) Journal of Bacteriology, 181, pp. 1338-1342
dc.descriptionVande Broek, A., Gysegom, P., Ona, O., Hendrickx, N., Prinsen, E., Impe, J.V., Vanderleyden, J., Transcriptional Analysis of the Azospirillum brasilense Indole-3-Pyruvate Decarboxylase Gene and Identification of a cis-Acting Sequence Involved in Auxin Responsive Expression (2005) Molecular Plant Microbe Interactions, 18, pp. 311-323
dc.descriptionVandeputte, O., Oden, S., Mol, A., Vereecke, D., Goethals, K., El Jaziri, M., Prinsen, E., Biosynthesis of auxin by the gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infected plant tissues (2005) Applied and Environmental Microbiology, 71, pp. 1169-1177
dc.descriptionVerstrepen, K., Klis, F., Flocculation, adhesion and biofilm formation in yeasts (2006) Molecular Microbiology, 60, pp. 5-15
dc.descriptionWang, D., Pajerowska-Mukhtar, K., Culler, A.H., Dong, X., Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway (2007) Current Biology, 17, pp. 1784-1790
dc.descriptionWoltering, E.J., Balk, P., Nijenhuis-Devries, M., Faivre, M., Ruys, G., Somhorst, D., Philosoph-Hadas, S., Friedman, H., An auxin-responsive 1-aminocyclopropane-1-carboxylate synthase is responsible for differential ethylene production in gravistimulated Antirrhinum majus L. flower stems (2005) Planta, 220, pp. 403-413
dc.descriptionWoodward, A.W., Bartel, B., Auxin: Regulation, action, and interaction (2005) Annals of Botany, 95, pp. 707-735
dc.descriptionZambryski, P., Tempe, J., Schell, J., Transfer and function of T-DNA genes from Agrobacterium Ti-plasmid and Ri-plasmid in plants (1989) Cell, 56, pp. 193-201
dc.descriptionYang, S., Zhang, Q., Guo, J., Charkowski, A.O., Glick, B.R., Ibekwe, A.M., Cooksey, D.A., Yang, C.-H., Global effect of indole-3-acetic acid biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937 (2007) Applied and Environmental Microbiology, 73, pp. 1079-1088
dc.languageen
dc.publisherNova Science Publishers, Inc.
dc.relationAuxins: Structure, Biosynthesis and Functions
dc.rightsaberto
dc.sourceScopus
dc.titleThe Roles Of Auxin During Plant-microbe Interactions
dc.typeCapítulos de libros


Este ítem pertenece a la siguiente institución