dc.creatorBiazoli C.R.
dc.creatorSilva S.
dc.creatorFranco M.A.R.
dc.creatorFrazao O.
dc.creatorCordeiro C.M.B.
dc.date2012
dc.date2015-06-25T20:25:49Z
dc.date2015-11-26T15:23:04Z
dc.date2015-06-25T20:25:49Z
dc.date2015-11-26T15:23:04Z
dc.date.accessioned2018-03-28T22:32:08Z
dc.date.available2018-03-28T22:32:08Z
dc.identifier
dc.identifierApplied Optics. Optical Society Of American (osa), v. 51, n. 24, p. 5941 - 5945, 2012.
dc.identifier1559128X
dc.identifier10.1364/AO.51.005941
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84865579053&partnerID=40&md5=def927113ef23888a50958d340956c6b
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/90544
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/90544
dc.identifier2-s2.0-84865579053
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1260453
dc.descriptionReal-time monitoring of the fabrication process of tapering down a multimode-interference-based fiber structure is presented. The device is composed of a pure silica multimode fiber (MMF) with an initial 125 μmdiameter spliced between two single-mode fibers. The process allows a thin MMF with adjustable parameters to obtain a high signal transmittance, arising from constructive interference among the guided modes at the output end of the MMF. Tapered structures with waist diameters as low as 55 μm were easily fabricated without the limitation of fragile splices or difficulty in controlling lateral fiber alignments. The sensing device is shown to be sensitive to the external environment, and a maximum sensitivity of 2946 nm/ refractive index unit in the refractive index range of 1.42-1.43 was attained. © 2012 Optical Society of America.
dc.description51
dc.description24
dc.description5941
dc.description5945
dc.descriptionFrazão, O., Silva, S., Viegas, J., Ferreira, L.A., Araújo, F.M., Santos, J.L., Optical fiber refractometry based on multimode interference (2011) Appl. Opt., 50, pp. E184-E188
dc.descriptionWang, Q., Farrell, G., Yan, W., Investigation on single-mode-multimode-single-mode fiber structure (2008) Journal of Lightwave Technology, 26 (5), pp. 512-519. , DOI 10.1109/JLT.2007.915205
dc.descriptionSoldano, L.B., Pennings, E.C.M., Optical multi-mode interference devices based on self-imaging-principles and applications (1995) J. Lightwave Technol., 13, pp. 615-627
dc.descriptionMohammed, W.S., Smith, P.W.E., Gu, X., All-fiber multimode interference bandpass filter (2006) Optics Letters, 31 (17), pp. 2547-2549. , DOI 10.1364/OL.31.002547
dc.descriptionAntonio-Lopez, J.E., Castillo-Guzman, A., May-Arrioja, D.A., Selvas-Aguilar, R., Wa, P.L., Tunable multimodeinterference bandpass fiber filter (2010) Opt. Lett., 35, pp. 324-326
dc.descriptionCastillo-Guzman, A., Antonio-Lopez, J.E., Selvas-Aguilar, R., May-Arrioja, D.A., Estudillo-Ayala, J., Wa, P.L., Widely tunable erbium-doped fiber laser based on multimode interference effect (2010) Opt. Express, 18, pp. 591-597
dc.descriptionGao, R.X., Wang, Q., Zhao, F., Meng, B., Qu, S.L., Optimal design and fabrication of SMS fiber temperature sensor for liquid (2010) Opt. Commun., 283, pp. 3149-3152
dc.descriptionAntonio-Lopez, J.E., Sanchez-Mondragon, J.J., Wa, P.L., May-Arrioja, D.A., Fiber-optic sensor for liquid level measurement (2011) Opt. Lett., 36, pp. 3425-3427
dc.descriptionWu, Q., Semenova, Y., Yan, B., Ma, Y., Wang, P., Yu, C., Farrell, G., Fiber refractometer based on a fiber Bragg grating and single-mode-multimode-single-mode fiber structure (2011) Opt. Lett., 36, pp. 2197-2199
dc.descriptionWu, Q., Semenova, Y., Wang, P., Hatta, A.M., Farrell, G., Experimental demonstration of a simple displacement sensor based on a bent single-mode-multimode-single-mode fiber structure (2011) Meas. Sci. Technol., 22, p. 025203
dc.descriptionZang, Z., Minato, T., Navaretti, P., Hinokuma, Y., Duelk, M., Velez, C., Hamamoto, K., High power (>110 mW) superluminescent diodes using active multi-mode interferometer (2010) IEEE Photon. Technol. Lett., 22, pp. 721-723
dc.descriptionZang, Z., Mukai, K., Navaretti, P., Duelk, M., Velez, C., Hamamoto, K., Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer (2012) Appl. Phys. Lett., 100, p. 031108
dc.descriptionWu, Q., Semenova, Y., Wang, P., Farrell, G., High sensitivity SMS fiber structure based refractometer-analysis and experiment (2011) Opt. Express, 19, pp. 7937-7944
dc.descriptionSilva, S., Pachon, E.G.P., Franco, M.A.R., Hayashi, J.G., Malcata, F.X., Frazão, O., Jorge, P., Cordeiro, C.M.B., Ultrahigh- sensitivity temperature fiber sensor based on multimode interference (2012) Appl. Opt., 51, pp. 3236-3242
dc.descriptionWang, P., Brambilla, G., Ding, M., Semenova, Y., Wu, Q., Farrell, G., High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference (2011) Opt. Lett., 36, pp. 2233-2235
dc.descriptionWang, P., Brambilla, G., Ding, M., Semenova, Y., Wu, Q., Farrell, G., Investigation of single-mode-multimode-singlemode and single-mode-tapered-multimode-single-mode fiber structures and their application for refractive index sensing (2011) J. Opt. Soc. Am. B, 28, pp. 1180-1186
dc.descriptionBrambilla, G., Finazzi, V., Richardson, D.J., Ultra-low-loss optical fiber nanotapers (2004) Opt. Express, 12, pp. 2258-2263
dc.descriptionBirks, T.A., Li, Y.W., The shape of fiber tapers (1992) J. Lightwave Technol., 10, pp. 432-438
dc.languageen
dc.publisherOptical Society of American (OSA)
dc.relationApplied Optics
dc.rightsfechado
dc.sourceScopus
dc.titleMultimode Interference Tapered Fiber Refractive Index Sensors
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución