dc.creatorAlmeida T.A.
dc.creatorYamakami A.
dc.date2012
dc.date2015-06-25T20:25:53Z
dc.date2015-11-26T15:22:59Z
dc.date2015-06-25T20:25:53Z
dc.date2015-11-26T15:22:59Z
dc.date.accessioned2018-03-28T22:32:05Z
dc.date.available2018-03-28T22:32:05Z
dc.identifier9783642252365
dc.identifierStudies In Computational Intelligence. , v. 394, n. , p. 199 - 214, 2012.
dc.identifier1860949X
dc.identifier10.1007/978-3-642-25237-2_12
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84856484509&partnerID=40&md5=f76fed8e2b95ad44b9081cd4676922b0
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/90561
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/90561
dc.identifier2-s2.0-84856484509
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1260441
dc.descriptionNowadays e-mail spam is not a novelty, but it is still an important rising problem with a big economic impact in society. Fortunately, there are different approaches able to automatically detect and remove most of those messages, and the best-known ones are based on machine learning techniques, such as Naïve Bayes classifiers and Support Vector Machines. However, there are several different models of Naïve Bayes filters, something the spam literature does not always acknowledge. In this chapter, we present and compare seven different versions of Naïve Bayes classifiers, the well-known linear Support Vector Machine and a new method based on the Minimum Description Length principle. Furthermore, we have conducted an empirical experiment on six public and real non-encoded datasets. The results indicate that the proposed filter is easy to implement, incrementally updateable and clearly outperforms the state-of-the-art spam filters. © 2012 Springer-Verlag Berlin Heidelberg.
dc.description394
dc.description
dc.description199
dc.description214
dc.descriptionAlmeida, T., Yamakami, A., Content-based spam filtering (2010) Proceedings of the 23rd IEEE International Joint Conference on Neural Networks, pp. 1-7. , Barcelona, Spain
dc.descriptionAlmeida, T., Yamakami, A., Almeida, J., Evaluation of approaches for dimensionality reduction applied with naive Bayes anti-spam filters (2009) Proceedings of the 8th IEEE International Conference on Machine Learning and Applications, pp. 517-522. , Miami, FL, USA
dc.descriptionAlmeida, T., Yamakami, A., Almeida, J., Filtering spams using the minimum description length principle (2010) Proceedings of the 25th ACM Symposium on Applied Computing, pp. 1856-1860. , Sierre, Switzerland
dc.descriptionAlmeida, T., Yamakami, A., Almeida, J., Probabilistic anti-spam filtering with dimensionality reduction (2010) Proceedings of the 25th ACM Symposium on Applied Computing, pp. 1804-1808. , Sierre, Switzerland
dc.descriptionAlmeida, T., Almeida, J., Yamakami, A., How the dimensionality reduction affects the accuracy of Naive-Bayes classifiers (2011) Journal of Internet Services and Applications, 1 (3), pp. 183-200
dc.descriptionAndroutsopoulos, I., Paliouras, G., Michelakis, E., Learning to filter unsolicited commercial e-mail (2004) Technical Report 2004/2 National Centre for Scientific Research "demokritos", , Athens, Greece
dc.descriptionBaldi, P., Brunak, S., Chauvin, Y., Andersen, C.A.F., Nielsen, H., Assessing the accuracy of prediction algorithms for classification: An overview (2000) Bioinformatics, 16 (5), pp. 412-424
dc.descriptionBarron, A., Rissanen, J., Yu, B., The minimum description length principle in coding and modeling (1998) IEEE Transactions on Information Theory, 44 (6), pp. 2743-2760. , PII S0018944898052845
dc.descriptionCormack, G., Email spam filtering: A systematic review (2008) Foundations and Trends in Information Retrieval, 1 (4), pp. 335-455
dc.descriptionDrucker, H., Wu, D., Vapnik, V., Support vector machines for spam categorization (1999) IEEE Transactions on Neural Networks, 10 (5), pp. 1048-1054
dc.descriptionForman, G., Scholz, M., Rajaram, S., Feature shaping for linear SVM classifiers (2009) Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 299-308. , Paris, France
dc.descriptionGrünwald, P., A tutorial introduction to the minimum description length principle (2005) Advances in Minimum Description Length: Theory and Applications, pp. 3-81. , Grünwald, P., Myung, I., Pitt, M. (eds.). MIT Press
dc.descriptionGomez Hidalgo, J.M., Evaluating cost-sensitive unsolicited bulk email categorization (2002) Proceedings of the ACM Symposium on Applied Computing, pp. 615-620
dc.descriptionJohn, G., Langley, P., Estimating continuous distributions in bayesian classifiers (1995) Proceedings of the 11st International Conference on Uncertainty in Artificial Intelligence, pp. 338-345. , Montreal, Canada
dc.descriptionKolcz, A., Alspector, J., SVM-based filtering of e-mail spam with content-specific misclassification costs (2001) Proceedings of the 1st International Conference on Data Mining, pp. 1-14. , San Jose, CA, USA
dc.descriptionLemire, D., Scale and translation invariant collaborative filtering systems (2005) Information Retrieval, 8 (1), pp. 129-150. , DOI 10.1023/B:INRT.0000048492.50961.a6
dc.descriptionLiu, S., Cui, K., Applications of support vector machine based on boolean kernel to spam filtering (2009) Modern Applied Science, 3 (10), pp. 27-31
dc.descriptionLosada, D., Azzopardi, L., Assessing multivariate Bernoulli models for information retrieval (2008) ACM Transactions on Information Systems, 26 (3), pp. 1-46
dc.descriptionMarsono, M., El-Kharashi, N., Gebali, F., Targeting spam control on middleboxes: Spam detection based on layer-3 e-mail content classification (2009) Computer Networks, 53 (6), pp. 835-848
dc.descriptionMatthews, B., Comparison of the predicted and observed secondary structure of T4 phage Lysozyme (1975) Biochimica et Biophysica Acta, 405 (2), pp. 442-451
dc.descriptionMcCallum, A., Nigam, K., A comparison of event models for naive Bayes text classication (1998) Proceedings of the 15th AAAIWorkshop on Learning for Text Categorization, pp. 41-48. , Menlo Park, CA, USA
dc.descriptionMetsis, V., Androutsopoulos, I., Paliouras, G., Spam filtering with naive Bayes -which naive Bayes? (2006) Proceedings of the 3rd International Conference on Email and Anti-Spam, pp. 1-5. , Mountain View, CA, USA
dc.descriptionRissanen, J., Modeling by shortest data description (1978) Automatica, 14, pp. 465-471
dc.descriptionSahami, M., Dumais, S., Hecherman, D., Horvitz, E., A Bayesian approach to filtering junk e-mail (1998) Proceedings of the 15th National Conference on Artificial Intelligence, pp. 55-62. , Madison, WI, USA
dc.descriptionSchneider, K.-M., On word frequency information and negative evidence in Naive Bayes text classification (2004) Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science), 3230, pp. 474-485. , Advances in Natural Languag Processing - 4th International Conference, EstAL 2004
dc.descriptionSculley, D., Wachman, G.M., Relaxed online SVMs for spam filtering (2007) Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR'07, pp. 415-422. , DOI 10.1145/1277741.1277813, Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR'07
dc.descriptionSculley, D., Wachman, G., Brodley, C., Spam filtering using inexact string matching in explicit feature space with on-line linear classifiers (2006) Proceedings of the 15th Text REtrieval Conference, pp. 1-10. , Gaithersburg, MD, USA
dc.descriptionSiefkes, C., Assis, F., Chhabra, S., Yerazunis, W.S., Combining winnow and orthogonal sparse bigrams for incremental spam filtering (2004) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3202, pp. 410-421
dc.descriptionSong, Y., Kolcz, A., Gilez, C., Better naive Bayes classification for high-precision spam detection (2009) Software - Practice and Experience, 39 (11), pp. 1003-1024
dc.descriptionVapnik, V.N., (1995) The Nature of Statistical Learning Theory, , Springer, New York
dc.descriptionZadeh, L., Fuzzy sets (1965) Information and Control, 8 (3), pp. 338-353
dc.descriptionZhang, L.E., Zhu, J., Yao, T., An evaluation of statistical spam filtering techniques (2004) ACM Transactions on Asian Language Information Processing, 3 (4), pp. 243-269. , DOI 10.1145/1039621.1039625, Computer Processing of Oriental Languages
dc.languageen
dc.publisher
dc.relationStudies in Computational Intelligence
dc.rightsfechado
dc.sourceScopus
dc.titleAdvances In Spam Filtering Techniques
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución