Artículos de revistas
Administration Of A Murine Diet Supplemented With Conjugated Linoleic Acid Increases The Expression And Activity Of Hepatic Uncoupling Proteins
Registro en:
Journal Of Bioenergetics And Biomembranes. , v. 44, n. 5, p. 587 - 596, 2012.
0145479X
10.1007/s10863-012-9463-y
2-s2.0-84866732687
Autor
Pereira A.F.
Sa L.L.
Reis F.H.Z.
Cardoso F.C.
Alberici R.M.
Prado I.M.R.
Eberlin M.N.
Uyemura S.A.
Curti C.
Alberici L.C.
Institución
Resumen
Daily intake of conjugated linoleic acid (CLA) has been shown to reduce body fat accumulation and to increase body metabolism; this latter effect has been often associated with the up-regulation of uncoupling proteins (UCPs). Here we addressed the effects of a CLA-supplemented murine diet (∼2 % CLA mixture, cis-9, trans-10 and trans-10, cis-12 isomers; 45 % of each isomer on alternating days) on mitochondrial energetics, UCP2 expression/activity in the liver and other associated morphological and functional parameters, in C57BL/6 mice. Diet supplementation with CLA reduced both lipid accumulation in adipose tissues and triacylglycerol plasma levels, but did not augment hepatic lipid storage. Livers of mice fed a diet supplemented with CLA showed high UCP2 mRNA levels and the isolated hepatic mitochondria showed indications of UCP activity: in the presence of guanosine diphosphate, the higher stimulation of respiration promoted by linoleic acid in mitochondria from the CLA mice was almost completely reduced to the level of the stimulation from the control mice. Despite the increased generation of reactive oxygen species through oxi-reduction reactions involving NAD+/NADH in the Krebs cycle, no oxidative stress was observed in the liver. In addition, in the absence of free fatty acids, basal respiration rates and the phosphorylating efficiency of mitochondria were preserved. These results indicate a beneficial and secure dose of CLA for diet supplementation in mice, which induces UCP2 overexpression and UCP activity in mitochondria while preserving the lipid composition and redox state of the liver. © Springer Science+Business Media, LLC 2012. 44 5 587 596 Alberici, L.C., Oliveira, H.C., Patrício, P.R., Kowaltowski, A.J., Vercesi, A.E., Hyperlipidemic mice present enhanced catabolism and higher mitochondrial ATP-sensitive K+channel activity (2006) Gastroenterology, 131, pp. 1228-1234 Alberici, R.M., Simas, R.C., Sanvido, G.B., Romão, W., Lalli, P.M., Benassi, M., Ambient mass spectrometry: Bringing MS into the real world (2010) Anal Bioanal Chem, 398, pp. 265-294 Alberici, L.C., Oliveira, H.C., Catharino, R.R., Vercesi, A.E., Eberlin, M.N., Alberici, R.M., Distinct hepatic lipid profile of hypertriglyceridemic mice determined by easy ambient sonic-spray ionization mass spectrometry (2011) Anal Bioanal Chem, 401, pp. 1651-1659 Azain, M.J., Hausman, D.B., Sisk, M.B., Flatt, W.P., Jewell, D.E., Dietary conjugated linoleic acid reduces rat adipose tissue cell size rather than cell number (2000) J Nutr, 130, pp. 1548-1554 Banni, S., Carta, G., Angioni, E., Murru, E., Scanu, P., Melis, M.P., Distribution of conjugated linoleic acid and metabolites in different lipid fractions in the rat liver (2001) J Lipid Res, 42, pp. 1056-1061 Bligh, E.G., Dyer, W.J., A rapid method of total lipid extraction and purification (1959) Can J Biochem Physiol, 37, pp. 911-917 Buege, J.A., Aust, S.D., Microsomal lipid peroxidation (1978) Methods Enzymol, 52, pp. 302-310 Cherian, G., Holsonbake, T.B., Goeger, M.P., Bildfell, R., Dietary CLA alters yolk and tissue FA composition and hepatic histopathology of laying hens (2002) Lipids, 37, pp. 751-757 Choi, J.S., Koh, I.U., Jung, M.H., Song, J., Effects of three different conjugated linoleic acid preparations on insulin signalling, fat oxidation and mitochondrial function in rats fed a high-fat diet (2007) Br J Nutr, 98, pp. 264-275 DeLany, J.P., West, D.B., Changes in body composition with conjugated linoleic acid (2000) J Am Coll Nutr, 19, pp. 487S-493S Ealey, K.N., El-Sohemy, A., Archer, M.C., Effects of dietary conjugated linoleic acid on the expression of uncoupling proteins in mice and rats (2002) Lipids, 37, pp. 853-861 Echtay, K.S., Murphy, M.P., Smith, R.A., Talbot, D.A., Brand, M.D., Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants (2002) J Biol Chem, 277, pp. 47129-47135 Echtay, K.S., Roussel, D., St-Pierre, J., Jekabsons, M.B., Cadenas, S., Stuart, J.A., Harper, J.A., Brand, M.D., Superoxide activates mitochondrial uncoupling proteins (2002) Nature, 415, pp. 96-99 Fruchart, J.C., Duriez, P., Staels, B., Peroxisome proliferatoractivated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis (1999) Curr Opin Lipidol, 10, pp. 245-257 Garcia-Ruiz, C., Colell, A., Mari, M., Morales, A., Fernandez-Checa, J.C., Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione (1997) J Biol Chem, 272, pp. 11369-11377 Garlid, K.D., Jabůrek, M., Jezek, P., Varecha, M., How do uncoupling proteins uncouple? (2000) Biochim Biophys Acta, 1459, pp. 383-389 Gavino, V.C., Gavino, G., Leblanc, M.J., Tuchweber, B., An isomeric mixture of conjugated linoleic acids but not pure cis-9, trans-11-octadecadienoic acid affects body weight gain and plasma lipids in hamsters (2000) J Nutr, 130, pp. 27-29 Gholam, P.M., Flancbaum, L., Machan, J.T., Charney, D.A., Kotler, D.P., Nonalcoholic fatty liver disease in severely obese subjects (2007) Am J Gastroenterol, 102, pp. 399-408 Griinari, J.M., Corl, B.A., Lacy, S.H., Chouinard, P.Y., Nurmela, K.V., Bauman, D.E., Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Delta (9)-desaturase (2000) J Nutr, 130, pp. 2285-2291 Haddad, R., Sparrapan, R., Eberlin, M.N., Desorption sonic spray ionization for (high) voltage-free ambient mass spectrometry (2006) Rapid Commun Mass Spectrom, 20, pp. 2901-2905 Haddad, R., Sparrapan, R., Kotiaho, T., Eberlin, M.N., Easy ambient sonic-spray ionization-membrane interface mass spectrometry for direct analysis of solution constituents (2008) Anal Chem, 80, pp. 898-903 Halade, G.V., Rahman, M.M., Fernandes, G., Effect of CLA isomers and their mixture on aging C57Bl/6J mice (2009) Eur J Nutr, 48, pp. 409-418 Hissin, P.J., Hilf, R., A fluorometric method for determination of oxidized and reduced glutathione in tissues (1976) Anal Biochem, 74, pp. 214-226 Jaudszus, A., Moeckel, P., Hamelmann, E., Jahreis, G., Trans-10, cis-12-CLA-caused lipodystrophy is associated with profound changes of fatty acid profiles of liver, white adipose tissue and erythrocytes in mice: Possible link to tissue-specific alterations of fatty acid desaturation (2010) Ann Nutr Metab, 57, pp. 103-111 Jezek, P., Garlid, K.D., Mammalian mitochondrial uncoupling proteins (1998) Int J Biochem Cell Biol, 30, pp. 1163-1168 Kennedy, A., Martinez, K., Schmidt, S., Mandrup, S., LaPoint, K., McIntosh, M., Antiobesity mechanisms of action of conjugated linoleic acid (2010) J Nutr Biochem, 21, pp. 171-179 Konig, B., Spielmann, J., Haase, K., Brandsch, C., Kluge, H., Stangl, G.I., Effects offish oil and conjugated linoleic acids on expression of target genes of PPAR alpha and sterol regulatory elementbinding proteins in the liver of laying hens (2008) Br J Nutr, 100, pp. 355-363 Kritchevsky, D., Tepper, S.A., Wright, S., Tso, P., Czarnecki, S.K., Influence of conjugated linoleic acid (CLA) on establishment and progression of atherosclerosis in rabbits (2000) J Am Coll Nutr, 19, pp. 472S-477S Lin, H., Boylston, T.D., Chang, M.J., Luedecke, L.O., Shultz, T.D., Survey of the conjugated linoleic acid contents of dairy products (1995) J Dairy Sci, 78, pp. 2358-2365 Moya-Camarena, S.Y., Heuvel, J.P.V., Blanchard, S.G., Leesnitzer, L.A., Belury, M.A., Conjugated linoleic acid is a potent naturally occurring ligand and activator of PPARalpha (1999) J Lipid Res, 40, pp. 1426-1433 Nicholls, D.G., The bioenergetics of brown adipose tissue mitochondria (1976) FEBS Lett, 61, pp. 103-110 Ohnuki, K., Haramizu, S., Ishihara, K., Fushiki, T., Increased energy metabolism and suppressed body fat accumulation in mice by a low concentration of conjugated linoleic acid (2001) Biosci Biotechnol Biochem, 65, pp. 2200-2204 Ohnuki, K., Haramizu, S., Oki, K., Ishihara, K., Fushiki, T., A single oral administration of conjugated linoleic acid enhanced energy metabolism in mice (2001) Lipids, 36, pp. 583-587 Ostrowska, E., Muralitharan, M., Cross, R.F., Bauman, D.E., Dunshea, F.R., Dietary conjugated linoleic acids increase lean tissue and decrease fat deposition in growing pigs (1999) J Nutr, 129, pp. 2037-2042 Park, Y., Albright, K.J., Liu, W., Storkson, J.M., Cook, M.E., Pariza, M.W., Effect of conjugated linoleic acid on body composition in mice (1997) Lipids, 32, pp. 853-858 Peters, J.M., Park, Y., Gonzalez, F.J., Pariza, M.W., Influence of conjugated linoleic acid on body composition and target gene expression in peroxisome proliferator-activated receptor alphanull mice (2001) Biochim Biophys Acta, 1533, pp. 233-242 Rahman, M.M., Bhattacharya, A., Banu, J., Fernandes, G., Conjugated linoleic acid protects against age-associated bone loss in C57BL/6 female mice (2007) J Nutr Biochem, 18, pp. 467-474 Rakhshandehroo, M., Hooiveld, G., Müller, M., Kersten, S., Comparative analysis of gene regulation by the transcription factor PPARalpha between mouse and human (2009) PLoS One, 4, pp. e6796 Reznick, A.Z., Packer, L., Oxidative damage to proteins: Spectrophotometric method for the carbonyl assay (1994) Methods Enzymol, 233, pp. 357-363 Ribot, J., Portillo, M.P., Picó, C., Macarulla, M.T., Palou, A., Effects of trans-10, cis-12 conjugated linoleic acid on the expression of uncoupling proteins in hamsters fed an atherogenic diet (2007) Br J Nutr, 97, pp. 1074-1082 Roche, H.M., Noone, E., Sewter, C., Mc, B.S., Savage, D., Gibney, M.J., O'Rahilly, S., Vidal-Puig, A.J., Isomer-dependent metabolic effects of conjugated linoleic acid: Insights from molecular markers sterol regulatory element-binding protein-1c and LXRalpha (2002) Diabetes, 51, pp. 2037-2044 Ryder, J.W., Portocarrero, C.P., Song, X.M., Cui, L., Yu, M., Combatsiaris, T., Galuska, D., Houseknecht, K.L., Isomer-specific antidiabetic properties of conjugated linoleic acid. Improved glucose tolerance, skeletal muscle insulin action, and UCP-2 gene expression (2001) Diabetes, 50, pp. 1149-1157 Samec, S., Seydoux, J., Dulloo, A.G., Role of UCP homologues in skeletal muscles and brown adipose tissue: Mediators of thermogenesis or regulators of lipids as fuel substrate? (1998) FASEB J, 12, pp. 715-724 Schild, L., Reinheckel, T., Wiswedel, I., Augustin, W., Short-term impairment of energy production in isolated rat liver mitochondria by hypoxia/reoxygenation: Involvement of oxidative protein modification (1997) Biochem J, 15, pp. 205-210 Schönfeld, P., Wojtczak, L., Fatty acids as modulators of the cellular production of reactive oxygen species (2008) Free Radic Biol Med, 45, pp. 231-241 Schoonjans, K., Staels, B., Auwerx, J., Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression (1996) J Lipid Res, 37, pp. 907-925 Semighini, C.P., Marins, M., Goldman, M.H.S., Goldman, G.H., Quantitative analysis of the relative transcript levels of ABC transporter Atr genes in Aspergillus nidulans by real-time reverse transcripition-PCR assay (2002) Appl Environ Microbiol, 68, pp. 1351-1357 Simas, R.C., Catharino, R.R., Cunha, I.B.S., Cabral, E.C., Barrera-Arellano, D., Eberlin, M.N., Instantaneous characterization of vegetable oils via TAG and FFA profiles by easy ambient sonicspray ionization mass spectrometry (2010) Analyst, 135, pp. 735-744 Takahashi, Y., Kushiro, M., Shinohara, K., Ide, T., Dietary conjugated linoleic acid reduces body fat mass and affects gene expression of proteins regulating energy metabolism in mice (2002) Comp Biochem Physiol B Biochem Mol Biol, 133, pp. 395-404 Terpstra, A.H., Effect of conjugated linoleic acid on body composition and plasma lipids in humans: An overview of the literature (2004) Am J Clin Nutr, 79, pp. 352-361 Tsuboyama-Kasaoka, N., Takahashi, M., Tanemura, K., Kim, H.J., Tange, T., Okuyama, H., Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice (2000) Diabetes, 49, pp. 1534-1542 Tsuboyama-Kasaoka, N., Miyazaki, H., Kasaoka, S., Ezaki, O., Increasing the amount of fat in a conjugated linoleic acid-supplemented diet reduces lipodystrophy in mice (2003) J Nutr, 133, pp. 1793-1799 Wang, Y.W., Jones, P.J., Conjugated linoleic acid and obesity control: Efficacy and mechanisms (2004) Int J Obes Relat Metab Disord, 28, pp. 941-955 West, D.B., Delany, J.P., Camet, P.M., Blohm, F., Truett, A.A., Scimeca, J., Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse (1998) Am J Physiol, 275, pp. R667-R672 West, D.B., Blohm, F.Y., Truett, A.A., DeLany, J.P., Conjugated linoleic acid persistently increases total energy expenditure in AKR/J mice without increasing uncoupling protein gene expression (2000) J Nutr, 130, pp. 2471-2477 World Health Organization, Programmes and Projects, Nutrition Topics, Controlling the Global Obesity Epidemic, , http://www.who.int/nutrition/topics/obesity/en, Accessed April 5, 2012 Zhou, M., Diwu, Z., Panchuk-Voloshina, N., Haugland, R.P., A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: Applications in detecting the activity of phagocyte NADPH oxidase and other oxidases (1997) Anal Biochem, 15, pp. 162-168