dc.creator | Jorge G.C. | |
dc.creator | Ferrari A.J. | |
dc.creator | Costa S.I.R. | |
dc.date | 2012 | |
dc.date | 2015-06-25T20:25:15Z | |
dc.date | 2015-11-26T15:21:33Z | |
dc.date | 2015-06-25T20:25:15Z | |
dc.date | 2015-11-26T15:21:33Z | |
dc.date.accessioned | 2018-03-28T22:31:00Z | |
dc.date.available | 2018-03-28T22:31:00Z | |
dc.identifier | | |
dc.identifier | Journal Of Number Theory. , v. 132, n. 11, p. 2397 - 2406, 2012. | |
dc.identifier | 0022314X | |
dc.identifier | 10.1016/j.jnt.2012.05.002 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84864385248&partnerID=40&md5=a740158ff847a172be1915c55557a69b | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/90432 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/90432 | |
dc.identifier | 2-s2.0-84864385248 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1260239 | |
dc.description | Based on algebraic number theory we construct some families of rotated D n-lattices with full diversity which can be good for signal transmission over both Gaussian and Rayleigh fading channels. Closed-form expressions for the minimum product distance of those lattices are obtained through algebraic properties. © 2012 Elsevier Inc. | |
dc.description | 132 | |
dc.description | 11 | |
dc.description | 2397 | |
dc.description | 2406 | |
dc.description | Andrade, A.A., Alves, C., Carlos, T.B., Rotated lattices via the cyclotomic field Q(ζ2r) (2006) Int. J. Appl. Math., 19 (3), pp. 321-331 | |
dc.description | Bayer-Fluckiger, E., Lattices and number fields (1999) Contemp. Math., 241, pp. 69-84 | |
dc.description | Bayer-Fluckiger, E., Ideal lattices (2002) Proceedings of the Conference Number Theory and Diophantine Geometry, pp. 168-184. , Cambridge Univ. Press | |
dc.description | Bayer-Fluckiger, E., Upper bounds for Euclidean minima of algebraic number fields (2006) J. Number Theory, 121 (2), pp. 305-323 | |
dc.description | Bayer-Fluckiger, E., Nebe, G., On the Euclidean minimum of some real number fields (2005) J. Theor. Nombres Bordeaux, 17 (2), pp. 437-454 | |
dc.description | Bayer-Fluckiger, E., Oggier, F., Viterbo, E., New algebraic constructions of rotated Zn-lattice constellations for the Rayleigh fading channel (2004) IEEE Trans. Inform. Theory, 50 (4), pp. 702-714 | |
dc.description | Bayer-Fluckiger, E., Suarez, I., Ideal lattices over totally real number fields and Euclidean minima (2006) Arch. Math., 86 (3), pp. 217-225 | |
dc.description | Boutros, J., Viterbo, E., Rastello, C., Belfiori, J.C., Good lattice constellations for both Rayleigh fading and Gaussian channels (1996) IEEE Trans. Inform. Theory, 42 (2), pp. 502-517 | |
dc.description | Conway, J.H., Sloane, N.J.A., (1988) Sphere Packings, Lattices and Groups, , Springer-Verlag | |
dc.description | Lopes, J.O.D., Discriminants of subfields of Q(ζ2r) (2003) J. Algebra Appl., 2, pp. 463-469 | |
dc.description | Micciancio, D., Goldwasser, S., Complexity of Lattice Problems: A Cryptographic Perspective (2002) Kluwer Internat. Ser. Engrg. Comput. Sci., 671. , Kluwer Academic Publishers | |
dc.description | Samuel, P., (1970) Algebraic Theory of Numbers, , Hermann, Paris | |
dc.description | Stewart, I.N., Tall, D.O., (1987) Algebraic Number Theory, , Chapman & Hall, London | |
dc.description | Washington, L.C., (1982) Introduction to Ciclotomic Fields, , Springer-Verlag, New York | |
dc.language | en | |
dc.publisher | | |
dc.relation | Journal of Number Theory | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Rotated D N-lattices | |
dc.type | Artículos de revistas | |