dc.creatorJorge G.C.
dc.creatorFerrari A.J.
dc.creatorCosta S.I.R.
dc.date2012
dc.date2015-06-25T20:25:15Z
dc.date2015-11-26T15:21:33Z
dc.date2015-06-25T20:25:15Z
dc.date2015-11-26T15:21:33Z
dc.date.accessioned2018-03-28T22:31:00Z
dc.date.available2018-03-28T22:31:00Z
dc.identifier
dc.identifierJournal Of Number Theory. , v. 132, n. 11, p. 2397 - 2406, 2012.
dc.identifier0022314X
dc.identifier10.1016/j.jnt.2012.05.002
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84864385248&partnerID=40&md5=a740158ff847a172be1915c55557a69b
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/90432
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/90432
dc.identifier2-s2.0-84864385248
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1260239
dc.descriptionBased on algebraic number theory we construct some families of rotated D n-lattices with full diversity which can be good for signal transmission over both Gaussian and Rayleigh fading channels. Closed-form expressions for the minimum product distance of those lattices are obtained through algebraic properties. © 2012 Elsevier Inc.
dc.description132
dc.description11
dc.description2397
dc.description2406
dc.descriptionAndrade, A.A., Alves, C., Carlos, T.B., Rotated lattices via the cyclotomic field Q(ζ2r) (2006) Int. J. Appl. Math., 19 (3), pp. 321-331
dc.descriptionBayer-Fluckiger, E., Lattices and number fields (1999) Contemp. Math., 241, pp. 69-84
dc.descriptionBayer-Fluckiger, E., Ideal lattices (2002) Proceedings of the Conference Number Theory and Diophantine Geometry, pp. 168-184. , Cambridge Univ. Press
dc.descriptionBayer-Fluckiger, E., Upper bounds for Euclidean minima of algebraic number fields (2006) J. Number Theory, 121 (2), pp. 305-323
dc.descriptionBayer-Fluckiger, E., Nebe, G., On the Euclidean minimum of some real number fields (2005) J. Theor. Nombres Bordeaux, 17 (2), pp. 437-454
dc.descriptionBayer-Fluckiger, E., Oggier, F., Viterbo, E., New algebraic constructions of rotated Zn-lattice constellations for the Rayleigh fading channel (2004) IEEE Trans. Inform. Theory, 50 (4), pp. 702-714
dc.descriptionBayer-Fluckiger, E., Suarez, I., Ideal lattices over totally real number fields and Euclidean minima (2006) Arch. Math., 86 (3), pp. 217-225
dc.descriptionBoutros, J., Viterbo, E., Rastello, C., Belfiori, J.C., Good lattice constellations for both Rayleigh fading and Gaussian channels (1996) IEEE Trans. Inform. Theory, 42 (2), pp. 502-517
dc.descriptionConway, J.H., Sloane, N.J.A., (1988) Sphere Packings, Lattices and Groups, , Springer-Verlag
dc.descriptionLopes, J.O.D., Discriminants of subfields of Q(ζ2r) (2003) J. Algebra Appl., 2, pp. 463-469
dc.descriptionMicciancio, D., Goldwasser, S., Complexity of Lattice Problems: A Cryptographic Perspective (2002) Kluwer Internat. Ser. Engrg. Comput. Sci., 671. , Kluwer Academic Publishers
dc.descriptionSamuel, P., (1970) Algebraic Theory of Numbers, , Hermann, Paris
dc.descriptionStewart, I.N., Tall, D.O., (1987) Algebraic Number Theory, , Chapman & Hall, London
dc.descriptionWashington, L.C., (1982) Introduction to Ciclotomic Fields, , Springer-Verlag, New York
dc.languageen
dc.publisher
dc.relationJournal of Number Theory
dc.rightsfechado
dc.sourceScopus
dc.titleRotated D N-lattices
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución