dc.creatorRezende H.C.
dc.creatorSantos A.A.C.
dc.creatorNavarro M.A.
dc.creatorJordao E.
dc.date2012
dc.date2015-06-25T20:25:05Z
dc.date2015-11-26T15:21:18Z
dc.date2015-06-25T20:25:05Z
dc.date2015-11-26T15:21:18Z
dc.date.accessioned2018-03-28T22:30:49Z
dc.date.available2018-03-28T22:30:49Z
dc.identifier
dc.identifierNuclear Engineering And Design. , v. 248, n. , p. 72 - 81, 2012.
dc.identifier295493
dc.identifier10.1016/j.nucengdes.2012.03.044
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84861100845&partnerID=40&md5=0f1dd15b8215489029a49eeedf766f9b
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/90381
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/90381
dc.identifier2-s2.0-84861100845
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1260188
dc.descriptionThermal stratification and striping are observed in many piping systems including those of nuclear power plants. Periodic occurrences of these thermal transients lead to fatigue and may induce undesirable failures and deformations to the piping. The Thermal Hydraulic Laboratory of the Centro de Desenvolvimento da Tecnologia Nuclear/Comissão Nacional de Energia Nuclear (CDTN/CNEN) conducts an experimental and numerical project simulating the thermal stratified flows in piping systems of pressurized water reactors (PWR) to obtain some understanding on these phenomena. Experiments were carried out in a test section simulating the steam generator injection nozzle of a PWR. A numerical simulation of one experiment was performed with the commercial finite volume Computational Fluid Dynamic code CFX 13.0. A vertical symmetry plane along the pipe was adopted to reduce the geometry in one half, reducing mesh element size and minimizing processing time. The RANS two equations RNG k-ε turbulence model with scalable wall function and the full buoyancy model were used in the simulation. In order to properly evaluate the numerical model it was performed a Verification and Validation (V&V) process. Numerical uncertainties due to mesh refinement and time step were evaluated. This validation process showed the great importance of a proper quantitative evaluation of numerical results. In past studies qualitative evaluations were considered enough and numerical results like the one presented here could be considered satisfactory for the prediction of thermal stratified flows. However, with the present V&V study it was possible to identify objectively the strengths and weaknesses of the model. © 2012 Elsevier B.V. All rights reserved.
dc.description248
dc.description
dc.description72
dc.description81
dc.description(2010) CFX-13.0 User Manuals, , ANSYS Canonsburg, USA
dc.description(2009) Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer - V&V 20, , ASME ASME NY, USA
dc.descriptionCelik, I.B., Ghia, U., Roache, P.J., Freitas, C.J., Coleman, H., Raad, P.E., Procedure for estimation and reporting of uncertainty due to discretization in CFD applications (2008) J. Fluids Eng., 130, pp. 0780011-0780014
dc.descriptionFarkas, T., Tóth, I., Fluent analysis of a ROSA cold leg stratification test (2010) Nucl. Eng. Des., 240, pp. 2169-2175
dc.descriptionHäfner, W., (1990) Thermische Schichit-Versuche im Horizontalen Rohr, , Kernforschungszentrum Karlsruhe GmbH Karlsruhe, Germany
dc.description(1993) Guide to the Expression of Uncertainty in Measurement, , ISO ISO Geneva, Switzerland
dc.description(2003) Use of Computational Fluid Dynamics Codes for Safety Analysis of Nuclear Reactor Systems, , IAEA TECDOC-1379, November, 2003
dc.descriptionMahaffy, J., Chung, B., Dubois, F., Dubois, F., Graffard, E., Heitsch, M., Henriksson, M., Zigh, G., Best practice guidelines for the use of CFD in nuclear reactor safety applications (2007) Organisation for Economic Co-operation and Development, Report NEA/CSNI/R(2007)5, , http://www.nea.fr/html/nsd/docs/2007/csni-r2007-5.pdf
dc.descriptionNavarro, M.A., Rezende, H.C., Santos, A.A.C., Experimental and numerical investigation of thermal stratified flow in horizontal pipes (2008) European Thermal-Sciences Conference - EUROTHERM, , Eindhoven, Netherlands (paper code MCV-2)
dc.descriptionNavarro, M.A., Rezende, H.C., Santos, A.A.C., Pinto, J.P.F., Thermal hydraulic analysis of a thermal stratified flow in a horizontal piping (2008) 7th International Topical Meeting on Nuclear Reactor Thermal Hydraulics Operation and Safety - NUTHOS-7, , Seoul, Korea
dc.descriptionNavarro, M.A., Rezende, H.C., Santos, A.A.C., Carvalho, H., Numerical and experimental simulation of the thermal stratification in a horizontal pipe (2008) Int. J. Transp. Phenom., 10, pp. 215-221
dc.descriptionRoache, P.J., (2009) Fundamentals of Verification and Validation, , Hermosa Publishers Socorro, USA
dc.descriptionSchuler, X., Herter, K.H., Thermal fatigue due to stratification and thermal shock loading of piping (2004) 30th MPA - Seminar in Conjunction with the 9th German-Japanese Seminar, pp. 61-614. , Stuttgart, Germany
dc.descriptionWagner, W., Pru, A., The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use (2002) J. Phys. Chem. Ref. Data, 31, pp. 387-535
dc.descriptionWalker, C., Manera, A., Niceno, B., Simiano, M., Prasser, H.M., Steady-state RANS-simulations of the mixing in a T-junction (2010) Nucl. Eng. Des., 240, pp. 2107-2115
dc.languageen
dc.publisher
dc.relationNuclear Engineering and Design
dc.rightsfechado
dc.sourceScopus
dc.titleVerification And Validation Of A Thermal Stratification Experiment Cfd Simulation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución