dc.creator | Grillo R. | |
dc.creator | Rosa A.H. | |
dc.creator | Fraceto L.F. | |
dc.date | 2015 | |
dc.date | 2015-06-25T12:55:49Z | |
dc.date | 2015-11-26T15:21:17Z | |
dc.date | 2015-06-25T12:55:49Z | |
dc.date | 2015-11-26T15:21:17Z | |
dc.date.accessioned | 2018-03-28T22:30:48Z | |
dc.date.available | 2018-03-28T22:30:48Z | |
dc.identifier | | |
dc.identifier | Chemosphere. Elsevier Ltd, v. 119, n. , p. 608 - 619, 2015. | |
dc.identifier | 456535 | |
dc.identifier | 10.1016/j.chemosphere.2014.07.049 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84919742434&partnerID=40&md5=30a2f432efd91cb7dcee3698c28fdc15 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/85654 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/85654 | |
dc.identifier | 2-s2.0-84919742434 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1260186 | |
dc.description | Growth in the development and production of engineered nanoparticles (ENPs) in recent years has increased the potential for interactions of these nanomaterials with aquatic and terrestrial environments. Carefully designed studies are therefore required in order to understand the fate, transport, stability, and toxicity of nanoparticles. Natural organic matter (NOM), such as the humic substances found in water, sediment, and soil, is one of the substances capable of interacting with ENPs. This review presents the findings of studies of the interaction of ENPs and NOM, and the possible effects on nanoparticle stability and the toxicity of these materials in the environment. In addition, ENPs and NOM are utilized for many different purposes, including the removal of metals and organic compounds from effluents, and the development of new electronic sensors and other devices for the detection of active substances. Discussion is therefore provided of some of the ways in which NOM can be used in the production of nanoparticles. Although there has been an increase in the number of studies in this area, further progress is needed to improve understanding of the dynamic interactions between ENPs and NOM. | |
dc.description | 119 | |
dc.description | | |
dc.description | 608 | |
dc.description | 619 | |
dc.description | Akaighe, N., MacCuspie, R.I., Navarro, D.A., Aga, D.S., Banerjee, S., Sohn, M., Sharma, V.K., Humic acid-induced silver nanoparticle formation under environmentally relevant conditions (2011) Environ. Sci. Technol., 45, pp. 3895-3901 | |
dc.description | Akaighe, N., Depner, S.W., Banerjee, S., Sharma, V.K., Sohn, M., The effects of monovalent and divalent cations on the stability of silver nanoparticles formed from direct reduction of silver ions by Suwannee River humic acid/natural organic matter (2012) Sci. Total Environ., 441, pp. 277-289 | |
dc.description | Alvarez-Puebla, R.A., dos Santos, D.S., Aroca, R.F., SERS detection of environmental pollutants in humic acid-gold nanoparticle composite materials (2007) Analyst, 132, pp. 1210-1214 | |
dc.description | Baalousha, M., Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter (2009) Sci. Total Environ., 407, pp. 2093-2101 | |
dc.description | Baalousha, M., Lead, J.R., Natural colloids and manufactured nanoparticles in aquatic and terrestrial systems (2011) Treatise on Water Science New York, pp. 89-129. , In: Wilderer, P. (Ed.). Elsevier | |
dc.description | Baalousha, M., Manciulea, A., Cumberland, S., Kendall, K., Lead, J.R., Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter (2008) Environ. Toxicol. Chem., 27, pp. 1875-1882 | |
dc.description | Baalousha, M., Nur, Y., Romer, I., Tejamaya, M., Lead, J.R., Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles (2013) Sci. Total Environ., 454, pp. 119-131 | |
dc.description | Bagheri, A., Ioppolo, A., Negre, M., Gennari, M., A method for isolating soil organic matter after the extraction of humic and fulvic acids (2007) Org. Geochem., 38, pp. 140-150 | |
dc.description | Baigorri, R., Garcia-Mina, J.M., Aroca, R.F., Alvarez-Puebla, R.A., Optical enhancing properties of anisotropic gold nanoplates prepared with different fractions of a natural humic substance (2008) Chem. Mater., 20, pp. 1516-1521 | |
dc.description | Bondarenko, O., Juganson, K., Ivask, A., Kasemets, K., Mortimer, M., Kahru, A., Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review (2013) Arch. Toxicol., 87, pp. 1181-1200 | |
dc.description | Bozon-Verduraz, F., Fievet, F., Piquemal, J.Y., Brayner, R., El Kabouss, K., Soumare, Y., Viau, G., Shafeev, G., Nanoparticles of metal and metal oxides: some peculiar synthesis methods, size and shape control, application to catalysts preparation (2009) Braz. J. Phys., 39, pp. 134-140 | |
dc.description | Buffle, J., Wilkinson, K.J., Stoll, S., Filella, M., Zhang, J.W., A generalized description of aquatic colloidal interactions: the three-colloidal component approach (1998) Environ. Sci. Technol., 32, pp. 2887-2899 | |
dc.description | Bystrzejewska-Piotrowska, G., Golimowski, J., Urban, P.L., Nanoparticles: their potential toxicity, waste and environmental management (2009) Waste Manage., 29, pp. 2587-2595 | |
dc.description | Campos, E.V.R., de Oliveira, J.L., Fraceto, L.F., Applications of controlled release systems for fungicides, herbicides, acaricides, nutrients, and plant growth hormones: a review (2014) Adv. Sci. Eng. Med., 6, pp. 373-387 | |
dc.description | Carlos, L., Cipollone, M., Soria, D.B., Moreno, M.S., Ogilby, P.R., Einschlag, F.S.G., Martire, D.O., The effect of humic acid binding to magnetite nanoparticles on the photogeneration of reactive oxygen species (2012) Sep. Purif. Technol., 91, pp. 23-29 | |
dc.description | Chae, S.R., Xiao, Y., Lin, S.H., Noeiaghaei, T., Kim, J.O., Wiesner, M.R., Effects of humic acid and electrolytes on photocatalytic reactivity and transport of carbon nanoparticle aggregates in water (2012) Water Res., 46, pp. 4053-4062 | |
dc.description | Chekli, L., Phuntsho, S., Roy, M., Shon, H.K., Characterisation of Fe-oxide nanoparticles coated with humic acid and Suwannee River natural organic matter (2013) Sci. Total Environ., 461, pp. 19-27 | |
dc.description | Chen, K.L., Elimelech, M., Influence of humic acid on the aggregation kinetics of fullerene (C-60) nanoparticles in monovalent and divalent electrolyte solutions (2007) J. Colloid Interf. Sci., 309, pp. 126-134 | |
dc.description | Chen, H.M., Liu, R.S., Architecture of metallic nanostructures: synthesis strategy and specific applications (2011) J. Phys. Chem. C, 115, pp. 3513-3527 | |
dc.description | Chen, J.W., Xiu, Z.M., Lowry, G.V., Alvarez, P.J.J., Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron (2011) Water Res., 45, pp. 1995-2001 | |
dc.description | Chinnapongse, S.L., MacCuspie, R.I., Hackley, V.A., Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters (2011) Sci. Total Environ., 409, pp. 2443-2450 | |
dc.description | Clemente, Z., Castro, V.L., Jonsson, C.M., Fraceto, L.F., Ecotoxicology of Nano-TiO2 an evaluation of its toxicity to organisms of aquatic ecosystems (2012) Int. J. Environ. Res., 6, pp. 33-50 | |
dc.description | Cumberland, S.A., Lead, J.R., Particle size distributions of silver nanoparticles at environmentally relevant conditions (2009) J. Chromatogr. A, 1216, pp. 9099-9105 | |
dc.description | Cunha, G.C., Cruz Romão, L.P., Macedo, Z.S., Production of alpha-alumina nanoparticles using aquatic humic substance (2014) Powder Technol., 254, pp. 335-344 | |
dc.description | Cupaioli, F.A., Zucca, F.A., Boraschi, D., Zecca, L., Engineered nanoparticles,. How brain friendly is this new guest? (2014) Prog. Neurobiol, , http://dx.doi.org/10.1016/j.pneurobio.2014.05.002 | |
dc.description | Dasari, T.P., Hwang, H.M., The effect of humic acids on the cytotoxicity of silver nanoparticles to a natural aquatic bacterial assemblage (2010) Sci. Total Environ., 408, pp. 5817-5823 | |
dc.description | de Moraes, S.L., Rezende, M.O.O., Capillary electrophoresis (CE): a powerful tool to characterize humic acid (HA) (2008) J. Brazil Chem. Soc., 19, pp. 24-28 | |
dc.description | de Oliveira, L.C., Sargentini, T., Rosa, A.H., Rocha, J.C., Simoes, M.L., Martin-Neto, L., da Silva, W.T.L., Serudo, R.L., The influence of seasonalness on the structural characteristics of aquatic humic substances extracted from Negro river (Amazon state) waters: interactions with Hg(II) (2007) J. Brazil Chem. Soc., 18, pp. 860-868 | |
dc.description | Delay, M., Dolt, T., Woellhaf, A., Sembritzki, R., Frimmel, F.H., Interactions and stability of silver nanoparticles in the aqueous phase: influence of natural organic matter (NOM) and ionic strength (2011) J. Chromatogr. A, 1218, pp. 4206-4212 | |
dc.description | Derenne, S., Tu, T.T.N., Characterizing the molecular structure of organic matter from natural environments: An analytical challenge (2014) C. R. Geosci., 346, pp. 53-63 | |
dc.description | Dickson, D., Liu, G.L., Li, C.Z., Tachiev, G., Cai, Y., Dispersion and stability of bare hematite nanoparticles: effect of dispersion tools, nanoparticle concentration, humic acid and ionic strength (2012) Sci. Total Environ., 419, pp. 170-177 | |
dc.description | Diegoli, S., Manciulea, A.L., Begum, S., Jones, I.P., Lead, J.R., Preece, J.A., Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules (2008) Sci. Total Environ., 402, pp. 51-61 | |
dc.description | Domingos, R.F., Tufenkji, N., Wilkinson, K.J., Aggregation of titanium dioxide nanoparticles: role of a fulvic acid (2009) Environ. Sci. Technol., 43, pp. 1282-1286 | |
dc.description | dos Santos, D.S., Alvarez-Puebla, R.A., Oliveira, O.N., Aroca, R.F., Controlling the size and shape of gold nanoparticles in fulvic acid colloidal solutions and their optical characterization using SERS (2005) J. Mater. Chem., 15, pp. 3045-3049 | |
dc.description | Dubas, S.T., Pimpan, V., Humic acid assisted synthesis of silver nanoparticles and its application to herbicide detection (2008) Mater. Lett., 62, pp. 2661-2663 | |
dc.description | Ellerbrock, R.H., Gerke, H.H., Characterization of organic matter composition of soil and flow path surfaces based on physicochemical principles-a review (2013) Adv. Agron., 121, pp. 117-177 | |
dc.description | Erhayem, M., Sohn, M., Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter (2014) Sci. Total Environ., pp. 249-257 | |
dc.description | Etheridge, M.L., Campbell, S.A., Erdman, A.G., Haynes, C.L., Wolf, S.M., McCullough, J., The big picture on nanomedicine: the state of investigational and approved nanomedicine products (2013) Nanomed. Nanotechnol., 9, pp. 1-14 | |
dc.description | Fabrega, J., Fawcett, S.R., Renshaw, J.C., Lead, J.R., Silver nanoparticle impact on bacterial growth: effect of ph, concentration, and organic matter (2009) Environ. Sci. Technol., 43, pp. 7285-7290 | |
dc.description | Fabrega, J., Renshaw, J.C., Lead, J.R., Interactions of silver nanoparticles with pseudomonas putida biofilms (2009) Environ. Sci. Technol., 43, pp. 9004-9009 | |
dc.description | Frazier, S.W., Nowack, K.O., Goins, K.M., Cannon, F.S., Kaplan, L.A., Hatcher, P.G., Characterization of organic matter from natural waters using tetramethylammonium hydroxide thermochemolysis GC-MS (2003) J. Anal. Appl. Pyrol., 70, pp. 99-128 | |
dc.description | Gao, J., Youn, S., Hovsepyan, A., Llaneza, V.L., Wang, Y., Bitton, G., Bonzongo, J.C.J., Dispersion and toxicity of selected manufactured nanomaterials in Natural River water samples: effects of water chemical composition (2009) Environ. Sci. Technol., 43, pp. 3322-3328 | |
dc.description | Gao, J., Powers, K., Wang, Y., Zhou, H.Y., Roberts, S.M., Moudgil, B.M., Koopman, B., Barber, D.S., Influence of Suwannee River humic acid on particle properties and toxicity of silver nanoparticles (2012) Chemosphere, 89, pp. 96-101 | |
dc.description | Gatselou, V.A., Giokas, D.L., Vlessidis, A.G., Determination of dissolved organic matter based on UV-light induced reduction of ionic silver to metallic nanoparticles by humic and fulvic acids (2014) Anal. Chim. Acta, 812, pp. 121-128 | |
dc.description | Ghosh, S., Mashayekhi, H., Bhowmik, P., Xing, B.S., Colloidal stability of Al2O3 nanoparticles as affected by coating of structurally different humic acids (2010) Langmuir, 26, pp. 873-879 | |
dc.description | Gibson, C.T., Turner, I.J., Roberts, C.J., Lead, J.R., Quantifying the dimensions of nanoscale organic surface layers in natural waters (2007) Environ. Sci. Technol., 41, pp. 1339-1344 | |
dc.description | Grillo, R., dos Santos, N.Z.P., Maruyama, C.R., Rosa, A.H., de Lima, R., Fraceto, L.F., Poly(epsilon-caprolactone)nanocapsules as carrier systems for herbicides: physico-chemical characterization and genotoxicity evaluation (2012) J. Hazard. Mater., 231, pp. 1-9 | |
dc.description | Grillo, R., Pereira, A.E.S., Nishisaka, C.S., Lima, R., Oehlke, K., Greiner, R., Fraceto, L.F., Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control (2014) J. Hazard Mater., 278, pp. 163-171 | |
dc.description | Handy, R.D., Owen, R., Valsami-Jones, E., The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs (2008) Ecotoxicology, 17, pp. 315-325 | |
dc.description | Haroune, L., Salaun, M., Menard, A., Legault, C.Y., Bellenger, J.P., Photocatalytic degradation of carbamazepine and three derivatives using TiO2 and ZnO: effect of pH, ionic strength, and natural organic matter (2014) Sci. Total Environ., 475, pp. 16-22 | |
dc.description | Hermans, T.M., Broeren, M.A.C., Gomopoulos, N., van der Schoot, P., van Genderen, M.H.P., Sommerdijk, N.A.J.M., Fytas, G., Meijer, E.W., Self-assembly of soft nanoparticles with tunable patchiness (2009) Nat. Nanotechnol., 4, pp. 721-726 | |
dc.description | Hu, J.D., Zevi, Y., Kou, X.M., Xiao, J., Wang, X.J., Jin, Y., Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions (2010) Sci. Total Environ., 408, pp. 3477-3489 | |
dc.description | Hyung, H., Kim, J.H., Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters (2008) Environ. Sci. Technol., 42, pp. 4416-4421 | |
dc.description | Hyung, H., Fortner, J.D., Hughes, J.B., Kim, J.H., Natural organic matter stabilizes carbon nanotubes in the aqueous phase (2007) Environ. Sci. Technol., 41, pp. 179-184 | |
dc.description | Irache, J.M., Esparza, I., Gamazo, C., Agueros, M., Espuelas, S., Nanomedicine: Novel approaches in human and veterinary therapeutics (2011) Vet. Parasitol., 180, pp. 47-71 | |
dc.description | Isaacson, C.W., Kleber, M., Field, J.A., Quantitative analysis of fullerene nanomaterials in environmental systems: a critical review (2009) Environ. Sci. Technol., 43, pp. 6463-6474 | |
dc.description | Jiang, X.J., Tong, M.P., Kim, H., Influence of natural organic matter on the transport and deposition of zinc oxide nanoparticles in saturated porous media (2012) J. Colloid Interf. Sci., 386, pp. 34-43 | |
dc.description | Johnson, R.L., Johnson, G.O., Nurmi, J.T., Tratnyek, P.G., Natural organic matter enhanced mobility of nano zerovalent iron (2009) Environ. Sci. Technol., 43, pp. 5455-5460 | |
dc.description | Kah, M., Hofmann, T., Nanopesticide research: current trends and future priorities (2014) Environ. Int., 63, pp. 224-235 | |
dc.description | Kah, M., Beulke, S., Tiede, K., Hofmann, T., Nanopesticides: state of knowledge, environmental fate, and exposure modeling (2013) Crit. Rev. Environ. Sci. Tech., 43, pp. 1823-1867 | |
dc.description | Kahru, A., Dubourguier, H.C., From ecotoxicology to nanoecotoxicology (2010) Toxicology, 269, pp. 105-119 | |
dc.description | Kang, S., Mauter, M.S., Elimelech, M., Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent (2009) Environ. Sci. Technol., 43, pp. 2648-2653 | |
dc.description | Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., Kumar, R., Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites-a review (2013) Prog. Polym. Sci., 38, pp. 1232-1261 | |
dc.description | Khot, L.R., Sankaran, S., Maja, J.M., Ehsani, R., Schuster, E.W., Applications of nanomaterials in agricultural production and crop protection: a review (2012) Crop. Prot., 35, pp. 64-70 | |
dc.description | Kim, J.Y., Kim, K.T., Lee, B.G., Lim, B.J., Kim, S.D., Developmental toxicity of Japanese medaka embryos by silver nanoparticles and released ions in the presence of humic acid (2013) Ecotox Environ. Safe, 92, pp. 57-63 | |
dc.description | Kumar, A., Sawant, K.K., Solid lipid nanoparticle-incorporated gel: the future treatment for skin infections? (2013) Nanomedicine-UK, 8, pp. 1901-1903 | |
dc.description | Ladj, R., Bitar, A., Eissa, M.M., Fessi, H., Mugnier, Y., Le Dantec, R., Elaissari, A., Polymer encapsulation of inorganic nanoparticles for biomedical applications (2013) Int. J. Pharm., 458, pp. 230-241 | |
dc.description | Lapresta-Fernandez, A., Fernandez, A., Blasco, J., Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms (2012) Trac-Trend Anal. Chem., 32, pp. 40-59 | |
dc.description | Levard, C., Hotze, E.M., Lowry, G.V., Brown, G.E., Environmental transformations of silver nanoparticles: impact on stability and toxicity (2012) Environ. Sci. Technol., 46, pp. 6900-6914 | |
dc.description | Li, K.G., Chen, Y.S., Effect of natural organic matter on the aggregation kinetics of CeO2 nanoparticles in KCl and CaCl2 solutions: measurements and modeling (2012) J. Hazard. Mater., 209, pp. 264-270 | |
dc.description | Li, D., Lyon, D.Y., Li, Q., Alvarez, P.J.J., Effect of soil sorption and aquatic natural organic matter on the antibacterial activity of a fullerene water suspension (2008) Environ. Toxicol. Chem., 27, pp. 1888-1894 | |
dc.description | Li, Q.L., Xie, B., Hwang, Y.S., Xu, Y.J., Kinetics of C-60 fullerene dispersion in water enhanced by natural organic matter and sunlight (2009) Environ. Sci. Technol., 43, pp. 3574-3579 | |
dc.description | Li, Z.Q., Greden, K., Alvarez, P.J.J., Gregory, K.B., Lowry, G.V., Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli (2010) Environ. Sci. Technol., 44, pp. 3462-3467 | |
dc.description | Li, M.H., Pokhrel, S., Jin, X., Madler, L., Damoiseaux, R., Hoek, E.M.V., Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped zno nanoparticles in aquatic media (2011) Environ. Sci. Technol., 45, pp. 755-761 | |
dc.description | Li, M., Lin, D.H., Zhu, L.Z., Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli (2013) Environ. Pollut., 173, pp. 97-102 | |
dc.description | Liang, L., Lv, J.T., Luo, L., Zhang, J., Zhang, S.Z., Influences of surface-coated fulvic and humic acids on the adsorption of metal cations to SiO2 nanoparticles (2011) Colloid Surface A, 389, pp. 27-32 | |
dc.description | Lin, D.H., Ji, J., Long, Z.F., Yang, K., Wu, F.C., The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp. (2012) Water Res., 46, pp. 4477-4487 | |
dc.description | Litvin, V.A., Minaev, B.F., Spectroscopy study of silver nanoparticles fabrication using synthetic humic substances and their antimicrobial activity (2013) Spectrochim. Acta A, 108, pp. 115-122 | |
dc.description | Litvin, V.A., Minaev, B.F., The size-controllable, one-step synthesis and characterization of gold nanoparticles protected by synthetic humic substances (2014) Mater. Chem. Phys., 144, pp. 168-178 | |
dc.description | Litvin, V.A., Galagan, R.L., Minaev, B.F., Kinetic and mechanism formation of silver nanoparticles coated by synthetic humic substances (2012) Colloid Surface A, 414, pp. 234-243 | |
dc.description | Liu, J.F., Zhao, Z.S., Jiang, G.B., Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water (2008) Environ. Sci. Technol., 42, pp. 6949-6954 | |
dc.description | Liu, X.Y., Wazne, M., Han, Y., Christodoulatos, C., Jasinkiewicz, K.L., Effects of natural organic matter on aggregation kinetics of boron nanoparticles in monovalent and divalent electrolytes (2010) J. Colloid Interf. Sci., 348, pp. 101-107 | |
dc.description | Liu, X., Jin, X., Cao, B., Tang, C.Y., Bactericidal activity of silver nanoparticles in environmentally relevant freshwater matrices: influences of organic matter and chelating agent (2013) J. Environ. Chem. Eng., 2, pp. 525-531 | |
dc.description | Loosli, F., Le Coustumer, P., Stoll, S., TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability (2013) Water Res., 47, pp. 6052-6063 | |
dc.description | Lövestam, G., Rauscher, H., Roebben, G., Klüttgen, B.S., Gibson, N., Putaud, J.P., Stamm, H., (2010) Considerations on a Definition of Nanomaterial for Regulatory Purposes, , Publications Office of the European Union, Luxembourg | |
dc.description | Lu, J.J., Li, Y., Yan, X.M., Shi, B.Y., Wang, D.S., Tang, H.X., Sorption of atrazine onto humic acids (HAs) coated nanoparticles (2009) Colloid Surface A, 347, pp. 90-96 | |
dc.description | Ma, P.C., Siddiqui, N.A., Marom, G., Kim, J.K., Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review (2010) Compos. Part A-Appl. S, 41, pp. 1345-1367 | |
dc.description | Mangematin, V., Walsh, S., The future of nanotechnologies (2012) Technovation, 32, pp. 157-160 | |
dc.description | Martin-Neto, L., Vieira, E.M., Sposito, G., Mechanism of atrazine sorption by humic acid: a spectroscopic study (1994) Environ. Sci. Technol., 28, pp. 1867-1873 | |
dc.description | Mashayekhi, H., Ghosh, S., Du, P., Xing, B.S., Effect of natural organic matter on aggregation behavior of C-60 fullerene in water (2012) J. Colloid Interf. Sci., 374, pp. 111-117 | |
dc.description | Matilainen, A., Vepsalainen, M., Sillanpaa, M., Natural organic matter removal by coagulation during drinking water treatment: a review (2010) Adv. Colloid Interf., 159, pp. 189-197 | |
dc.description | Maurer-Jones, M.A., Gunsolus, I.L., Murphy, C.J., Haynes, C.L., Toxicity of engineered nanoparticles in the environment (2013) Anal. Chem., 85, pp. 3036-3049 | |
dc.description | Maynard, A.D., Don't define nanomaterials (2011) Nature, 475, p. 31 | |
dc.description | Mert, E.H., Yildirim, H., Uzumcu, A.T., Kavas, H., Synthesis and characterization of magnetic polyHIPEs with humic acid surface modified magnetic iron oxide nanoparticles (2013) React. Funct. Polym., 73, pp. 175-181 | |
dc.description | Mohd Omar, F., Abdul Aziz, H., Stoll, S., Aggregation and disaggregation of ZnO nanoparticles: influence of pH and adsorption of Suwannee River humic acid (2014) Sci. Total Environ., pp. 195-201 | |
dc.description | Niu, H.Y., Zhang, D., Zhang, S.X., Zhang, X.L., Meng, Z.F., Cai, Y.Q., Humic acid coated Fe3O4 magnetic nanoparticles as highly efficient Fenton-like catalyst for complete mineralization of sulfathiazole (2011) J. Hazard. Mater., 190, pp. 559-565 | |
dc.description | Nowack, B., Bucheli, T.D., Occurrence, behavior and effects of nanoparticles in the environment (2007) Environ. Pollut., 150, pp. 5-22 | |
dc.description | Pallem, V.L., Stretz, H.A., Wells, M.J.M., Evaluating aggregation of gold nanoparticles and humic substances using fluorescence spectroscopy (2009) Environ. Sci. Technol., 43, pp. 7531-7535 | |
dc.description | Paques, J.P., van der Linden, E., van Rijn, C.J., Sagis, L.M., Preparation methods of alginate nanoparticles (2014) Adv. Colloid Interf. Sci. | |
dc.description | Peng, L., Qin, P.F., Lei, M., Zeng, Q.R., Song, H.J., Yang, J., Shao, J.H., Gu, J.D., Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water (2012) J. Hazard. Mater., 209, pp. 193-198 | |
dc.description | Pereira, A.E., Grillo, R., Mello, N.F., Rosa, A.H., Fraceto, L.F., Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment (2014) J. Hazard. Mater., 268, pp. 207-215 | |
dc.description | Pignatello, J.J., Dynamic interactions of natural organic matter and organic compounds (2012) J. Soil Sediment, 12, pp. 1241-1256 | |
dc.description | Probst, C.E., Zrazhevskiy, P., Bagalkot, V., Gao, X.H., Quantum dots as a platform for nanoparticle drug delivery vehicle design (2013) Adv. Drug Deliv. Rev., 65, pp. 703-718 | |
dc.description | Qu, X.L., Hwang, Y.S., Alvarez, P.J.J., Bouchard, D., Li, Q.L., UV irradiation and humic acid mediate aggregation of aqueous fullerene (nC(60)) nanoparticles (2010) Environ. Sci. Technol., 44, pp. 7821-7826 | |
dc.description | Quik, J.T.K., Lynch, I., Van Hoecke, K., Miermans, C.J.H., De Schamphelaere, K.A.C., Janssen, C.R., Dawson, K.A., Van de Meent, D., Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water (2010) Chemosphere, 81, pp. 711-715 | |
dc.description | Rao, J.P., Geckeler, K.E., Polymer nanoparticles: preparation techniques and size-control parameters (2011) Prog. Polym. Sci., 36, pp. 887-913 | |
dc.description | Ritson, J.P., Graham, N.J.D., Templeton, M.R., Clark, J.M., Gough, R., Freeman, C., The impact of climate change on the treatability of dissolved organic matter (DOM) in upland water supplies: a UK perspective (2014) Sci. Total Environ., 473, pp. 714-730 | |
dc.description | Rocha, J.C., Rosa, A.H., Cardoso, A.A., (2009) Introdução à Química Ambiental, , Bookman, Porto Alegre | |
dc.description | Roco, M.C., The long view of nanotechnology development: the national nanotechnology initiative at 10years (2011) J. Nanopart. Res., 13, pp. 427-445 | |
dc.description | Romanello, M.B., de Cortalezzi, M.M.F., An experimental study on the aggregation of TiO2 nanoparticles under environmentally relevant conditions (2013) Water Res., 47, pp. 3887-3898 | |
dc.description | Rosa, A.H., Goveia, D., Bellin, I.C., Tonello, P.S., Antunes, M.L.P., Filho, N.L.D., Filho, U.P.R., Lability study of Cu(II), Cd(II), Mn(II) and Ni(II) complexed by aquatic humic substances using organomodified cellulose membranes (2007) Quim. Nova, 30, pp. 59-65 | |
dc.description | Saleh, N.B., Pfefferle, L.D., Elimelech, M., Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications (2008) Environ. Sci. Technol., 42, pp. 7963-7969 | |
dc.description | Saleh, N.B., Pfefferle, L.D., Elimelech, M., Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes (2010) Environ. Sci. Technol., 44, pp. 2412-2418 | |
dc.description | Santschi, P.H., Guo, L., Means, J.C., Ravichandran, M., Natural organic matter binding of trace metals and trace organic contaminants in estuaries (1999) Biogeochemistry of Gulf of Mexico Estuaries, pp. 347-380. , In: Bianchi, T.S., Pennock, J.R., Twilley, R.R. (Eds.). John Wiley & Sons | |
dc.description | Schwabe, F., Schulin, R., Limbach, L.K., Stark, W., Burge, D., Nowack, B., Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture (2013) Chemosphere, 91, pp. 512-520 | |
dc.description | Senesi, N., Loffredo, E., Metal ion complexation by soil humic substances (2005) Chemical Processes in Soil, pp. 563-618. , In: Sparks, D.l., Tabatabai, M.A. (Eds.). Madison, WI | |
dc.description | Senesi, N., Dorazio, V.D., Miano, T.M., Adsorption mechanisms of s-triazine and bipyridylium herbicides on humic acids from hop field soils (1995) Geoderma, 66, pp. 273-283 | |
dc.description | Sharma, V.K., Siskova, K.M., Zboril, R., Gardea-Torresdey, J.L., Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity (2014) Adv. Colloid Interface Sci., 204, pp. 15-34 | |
dc.description | Stankus, D.P., Lohse, S.E., Hutchison, J.E., Nason, J.A., Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents (2011) Environ. Sci. Technol., 45, pp. 3238-3244 | |
dc.description | Tang, W.W., Zeng, G.M., Gong, J.L., Liang, J., Xu, P., Zhang, C., Huang, B.B., Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review (2014) Sci. Total Environ., pp. 1014-1027 | |
dc.description | Tartaglia, P., Sciortino, F., Association of limited valence patchy particles in two dimensions (2010) J. Phys-Condens Mat., p. 22 | |
dc.description | Terashima, M., Nagao, S., Solubilization of [60]fullerene in water by aquatic humic substances (2007) Chem. Lett., 36, pp. 302-303 | |
dc.description | Thio, B.J.R., Zhou, D.X., Keller, A.A., Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles (2011) J. Hazard. Mater., 189, pp. 556-563 | |
dc.description | van den Berg, L.J.L., Shotbolt, L., Ashmore, M.R., Dissolved organic carbon (DOC) concentrations in UK soils and the influence of soil, vegetation type and seasonality (2012) Sci. Total Environ., 427, pp. 269-276 | |
dc.description | Van Hoecke, K., De Schamphelaere, K.A.C., Ramirez-Garcia, S., Van der Meeren, P., Smagghe, G., Janssen, C.R., Influence of alumina coating on characteristics and effects of SiO2 nanoparticles in algal growth inhibition assays at various pH and organic matter contents (2011) Environ. Int., 37, pp. 1118-1125 | |
dc.description | Van Hoecke, K., De Schamphelaere, K.A.C., Van der Meeren, P., Smagghe, G., Janssen, C.R., Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength (2011) Environ. Pollut., 159, pp. 970-976 | |
dc.description | Wandruszka, R.V., Humic acids: their detergent qualities and potential uses in pollution remediation (2000) Geochem. Trans., 2, pp. 1-10 | |
dc.description | Wang, Q., Cissoko, N., Zhou, M., Xu, X.H., Effects and mechanism of humic acid on chromium (VI) removal by zero-valent iron (Fe-0) nanoparticles (2011) Phys. Chem. Earth, 36, pp. 442-446 | |
dc.description | Wang, Y., Zhu, L.Y., Dong, Z., Xie, S.Y., Chen, X.J., Lu, M.M., Wang, X.F., Zhou, W.Z., Preparation and stability study of norfloxacin-loaded solid lipid nanoparticle suspensions (2012) Colloid Surface B, 98, pp. 105-111 | |
dc.description | Xu, B., Song, R.G., Wang, C., Preparation and characterization of Ag, Au and Ti metal nanoparticles colloids by pulsed laser ablation in liquids (2012) Adv. Mater., PART 13 (415-417), pp. 648-651 | |
dc.description | Yang, S.P., Bar-Ilan, O., Peterson, R.E., Heideman, W., Hamers, R.J., Pedersen, J.A., Influence of humic acid on titanium dioxide nanoparticle toxicity to developing zebrafish (2013) Environ. Sci. Technol., 47, pp. 4718-4725 | |
dc.description | Yang, Y.K., Nakada, N., Nakajima, R., Yasojima, M., Wang, C., Tanaka, H., PH, ionic strength and dissolved organic matter alter aggregation of fullerene C-60 nanoparticles suspensions in wastewater (2013) J. Hazard. Mater., 244, pp. 582-587 | |
dc.description | Zhang, Y., Chen, Y.S., Westerhoff, P., Crittenden, J., Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles (2009) Water Res., 43, pp. 4249-4257 | |
dc.description | Zhang, Z., Cissoko, N., Wo, J.J., Xu, X.H., Factors influencing the dechlorination of 2,4-dichlorophenol by Ni-Fe nanoparticles in the presence of humic acid (2009) J. Hazard. Mater., 165, pp. 78-86 | |
dc.description | Zhang, H.Y., Smith, J.A., Oyanedel-Craver, V., The effect of natural water conditions on the anti-bacterial performance and stability of silver nanoparticles capped with different polymers (2012) Water Res., 46, pp. 691-699 | |
dc.description | Zhang, X., Kah, M., Jonker, M.T.O., Hofmann, T., Dispersion state and humic acids concentration-dependent sorption of pyrene to carbon nanotubes (2012) Environ. Sci. Technol., 46, pp. 7166-7173 | |
dc.description | Zhang, W., Rattanaudompol, U.S., Li, H., Bouchard, D., Effects of humic and fulvic acids on aggregation of aqu/nC(60) nanoparticles (2013) Water Res., 47, pp. 1793-1802 | |
dc.description | Zhang, X., Zhang, P.Y., Wu, Z., Zhang, L., Zeng, G.M., Zhou, C.J., Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles (2013) Colloid Surface A, 435, pp. 85-90 | |
dc.description | Zhao, J., Wang, Z.Y., Dai, Y.H., Xing, B.S., Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter (2013) Water Res., 47, pp. 4169-4178 | |
dc.description | Zhou, D.X., Keller, A.A., Role of morphology in the aggregation kinetics of ZnO nanoparticles (2010) Water Res., 44, pp. 2948-2956 | |
dc.description | Zhou, X.Z., Shu, L., Zhao, H.B., Guo, X.Y., Wang, X.L., Tao, S., Xing, B.S., Suspending multi-walled carbon nanotubes by humic acids from a peat soil (2012) Environ. Sci. Technol., 46, pp. 3891-3897 | |
dc.language | en | |
dc.publisher | Elsevier Ltd | |
dc.relation | Chemosphere | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Engineered Nanoparticles And Organic Matter: A Review Of The State-of-the-art | |
dc.type | Artículos de revistas | |