dc.creatorGrillo R.
dc.creatorRosa A.H.
dc.creatorFraceto L.F.
dc.date2015
dc.date2015-06-25T12:55:49Z
dc.date2015-11-26T15:21:17Z
dc.date2015-06-25T12:55:49Z
dc.date2015-11-26T15:21:17Z
dc.date.accessioned2018-03-28T22:30:48Z
dc.date.available2018-03-28T22:30:48Z
dc.identifier
dc.identifierChemosphere. Elsevier Ltd, v. 119, n. , p. 608 - 619, 2015.
dc.identifier456535
dc.identifier10.1016/j.chemosphere.2014.07.049
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84919742434&partnerID=40&md5=30a2f432efd91cb7dcee3698c28fdc15
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85654
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85654
dc.identifier2-s2.0-84919742434
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1260186
dc.descriptionGrowth in the development and production of engineered nanoparticles (ENPs) in recent years has increased the potential for interactions of these nanomaterials with aquatic and terrestrial environments. Carefully designed studies are therefore required in order to understand the fate, transport, stability, and toxicity of nanoparticles. Natural organic matter (NOM), such as the humic substances found in water, sediment, and soil, is one of the substances capable of interacting with ENPs. This review presents the findings of studies of the interaction of ENPs and NOM, and the possible effects on nanoparticle stability and the toxicity of these materials in the environment. In addition, ENPs and NOM are utilized for many different purposes, including the removal of metals and organic compounds from effluents, and the development of new electronic sensors and other devices for the detection of active substances. Discussion is therefore provided of some of the ways in which NOM can be used in the production of nanoparticles. Although there has been an increase in the number of studies in this area, further progress is needed to improve understanding of the dynamic interactions between ENPs and NOM.
dc.description119
dc.description
dc.description608
dc.description619
dc.descriptionAkaighe, N., MacCuspie, R.I., Navarro, D.A., Aga, D.S., Banerjee, S., Sohn, M., Sharma, V.K., Humic acid-induced silver nanoparticle formation under environmentally relevant conditions (2011) Environ. Sci. Technol., 45, pp. 3895-3901
dc.descriptionAkaighe, N., Depner, S.W., Banerjee, S., Sharma, V.K., Sohn, M., The effects of monovalent and divalent cations on the stability of silver nanoparticles formed from direct reduction of silver ions by Suwannee River humic acid/natural organic matter (2012) Sci. Total Environ., 441, pp. 277-289
dc.descriptionAlvarez-Puebla, R.A., dos Santos, D.S., Aroca, R.F., SERS detection of environmental pollutants in humic acid-gold nanoparticle composite materials (2007) Analyst, 132, pp. 1210-1214
dc.descriptionBaalousha, M., Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter (2009) Sci. Total Environ., 407, pp. 2093-2101
dc.descriptionBaalousha, M., Lead, J.R., Natural colloids and manufactured nanoparticles in aquatic and terrestrial systems (2011) Treatise on Water Science New York, pp. 89-129. , In: Wilderer, P. (Ed.). Elsevier
dc.descriptionBaalousha, M., Manciulea, A., Cumberland, S., Kendall, K., Lead, J.R., Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter (2008) Environ. Toxicol. Chem., 27, pp. 1875-1882
dc.descriptionBaalousha, M., Nur, Y., Romer, I., Tejamaya, M., Lead, J.R., Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles (2013) Sci. Total Environ., 454, pp. 119-131
dc.descriptionBagheri, A., Ioppolo, A., Negre, M., Gennari, M., A method for isolating soil organic matter after the extraction of humic and fulvic acids (2007) Org. Geochem., 38, pp. 140-150
dc.descriptionBaigorri, R., Garcia-Mina, J.M., Aroca, R.F., Alvarez-Puebla, R.A., Optical enhancing properties of anisotropic gold nanoplates prepared with different fractions of a natural humic substance (2008) Chem. Mater., 20, pp. 1516-1521
dc.descriptionBondarenko, O., Juganson, K., Ivask, A., Kasemets, K., Mortimer, M., Kahru, A., Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review (2013) Arch. Toxicol., 87, pp. 1181-1200
dc.descriptionBozon-Verduraz, F., Fievet, F., Piquemal, J.Y., Brayner, R., El Kabouss, K., Soumare, Y., Viau, G., Shafeev, G., Nanoparticles of metal and metal oxides: some peculiar synthesis methods, size and shape control, application to catalysts preparation (2009) Braz. J. Phys., 39, pp. 134-140
dc.descriptionBuffle, J., Wilkinson, K.J., Stoll, S., Filella, M., Zhang, J.W., A generalized description of aquatic colloidal interactions: the three-colloidal component approach (1998) Environ. Sci. Technol., 32, pp. 2887-2899
dc.descriptionBystrzejewska-Piotrowska, G., Golimowski, J., Urban, P.L., Nanoparticles: their potential toxicity, waste and environmental management (2009) Waste Manage., 29, pp. 2587-2595
dc.descriptionCampos, E.V.R., de Oliveira, J.L., Fraceto, L.F., Applications of controlled release systems for fungicides, herbicides, acaricides, nutrients, and plant growth hormones: a review (2014) Adv. Sci. Eng. Med., 6, pp. 373-387
dc.descriptionCarlos, L., Cipollone, M., Soria, D.B., Moreno, M.S., Ogilby, P.R., Einschlag, F.S.G., Martire, D.O., The effect of humic acid binding to magnetite nanoparticles on the photogeneration of reactive oxygen species (2012) Sep. Purif. Technol., 91, pp. 23-29
dc.descriptionChae, S.R., Xiao, Y., Lin, S.H., Noeiaghaei, T., Kim, J.O., Wiesner, M.R., Effects of humic acid and electrolytes on photocatalytic reactivity and transport of carbon nanoparticle aggregates in water (2012) Water Res., 46, pp. 4053-4062
dc.descriptionChekli, L., Phuntsho, S., Roy, M., Shon, H.K., Characterisation of Fe-oxide nanoparticles coated with humic acid and Suwannee River natural organic matter (2013) Sci. Total Environ., 461, pp. 19-27
dc.descriptionChen, K.L., Elimelech, M., Influence of humic acid on the aggregation kinetics of fullerene (C-60) nanoparticles in monovalent and divalent electrolyte solutions (2007) J. Colloid Interf. Sci., 309, pp. 126-134
dc.descriptionChen, H.M., Liu, R.S., Architecture of metallic nanostructures: synthesis strategy and specific applications (2011) J. Phys. Chem. C, 115, pp. 3513-3527
dc.descriptionChen, J.W., Xiu, Z.M., Lowry, G.V., Alvarez, P.J.J., Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron (2011) Water Res., 45, pp. 1995-2001
dc.descriptionChinnapongse, S.L., MacCuspie, R.I., Hackley, V.A., Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters (2011) Sci. Total Environ., 409, pp. 2443-2450
dc.descriptionClemente, Z., Castro, V.L., Jonsson, C.M., Fraceto, L.F., Ecotoxicology of Nano-TiO2 an evaluation of its toxicity to organisms of aquatic ecosystems (2012) Int. J. Environ. Res., 6, pp. 33-50
dc.descriptionCumberland, S.A., Lead, J.R., Particle size distributions of silver nanoparticles at environmentally relevant conditions (2009) J. Chromatogr. A, 1216, pp. 9099-9105
dc.descriptionCunha, G.C., Cruz Romão, L.P., Macedo, Z.S., Production of alpha-alumina nanoparticles using aquatic humic substance (2014) Powder Technol., 254, pp. 335-344
dc.descriptionCupaioli, F.A., Zucca, F.A., Boraschi, D., Zecca, L., Engineered nanoparticles,. How brain friendly is this new guest? (2014) Prog. Neurobiol, , http://dx.doi.org/10.1016/j.pneurobio.2014.05.002
dc.descriptionDasari, T.P., Hwang, H.M., The effect of humic acids on the cytotoxicity of silver nanoparticles to a natural aquatic bacterial assemblage (2010) Sci. Total Environ., 408, pp. 5817-5823
dc.descriptionde Moraes, S.L., Rezende, M.O.O., Capillary electrophoresis (CE): a powerful tool to characterize humic acid (HA) (2008) J. Brazil Chem. Soc., 19, pp. 24-28
dc.descriptionde Oliveira, L.C., Sargentini, T., Rosa, A.H., Rocha, J.C., Simoes, M.L., Martin-Neto, L., da Silva, W.T.L., Serudo, R.L., The influence of seasonalness on the structural characteristics of aquatic humic substances extracted from Negro river (Amazon state) waters: interactions with Hg(II) (2007) J. Brazil Chem. Soc., 18, pp. 860-868
dc.descriptionDelay, M., Dolt, T., Woellhaf, A., Sembritzki, R., Frimmel, F.H., Interactions and stability of silver nanoparticles in the aqueous phase: influence of natural organic matter (NOM) and ionic strength (2011) J. Chromatogr. A, 1218, pp. 4206-4212
dc.descriptionDerenne, S., Tu, T.T.N., Characterizing the molecular structure of organic matter from natural environments: An analytical challenge (2014) C. R. Geosci., 346, pp. 53-63
dc.descriptionDickson, D., Liu, G.L., Li, C.Z., Tachiev, G., Cai, Y., Dispersion and stability of bare hematite nanoparticles: effect of dispersion tools, nanoparticle concentration, humic acid and ionic strength (2012) Sci. Total Environ., 419, pp. 170-177
dc.descriptionDiegoli, S., Manciulea, A.L., Begum, S., Jones, I.P., Lead, J.R., Preece, J.A., Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules (2008) Sci. Total Environ., 402, pp. 51-61
dc.descriptionDomingos, R.F., Tufenkji, N., Wilkinson, K.J., Aggregation of titanium dioxide nanoparticles: role of a fulvic acid (2009) Environ. Sci. Technol., 43, pp. 1282-1286
dc.descriptiondos Santos, D.S., Alvarez-Puebla, R.A., Oliveira, O.N., Aroca, R.F., Controlling the size and shape of gold nanoparticles in fulvic acid colloidal solutions and their optical characterization using SERS (2005) J. Mater. Chem., 15, pp. 3045-3049
dc.descriptionDubas, S.T., Pimpan, V., Humic acid assisted synthesis of silver nanoparticles and its application to herbicide detection (2008) Mater. Lett., 62, pp. 2661-2663
dc.descriptionEllerbrock, R.H., Gerke, H.H., Characterization of organic matter composition of soil and flow path surfaces based on physicochemical principles-a review (2013) Adv. Agron., 121, pp. 117-177
dc.descriptionErhayem, M., Sohn, M., Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter (2014) Sci. Total Environ., pp. 249-257
dc.descriptionEtheridge, M.L., Campbell, S.A., Erdman, A.G., Haynes, C.L., Wolf, S.M., McCullough, J., The big picture on nanomedicine: the state of investigational and approved nanomedicine products (2013) Nanomed. Nanotechnol., 9, pp. 1-14
dc.descriptionFabrega, J., Fawcett, S.R., Renshaw, J.C., Lead, J.R., Silver nanoparticle impact on bacterial growth: effect of ph, concentration, and organic matter (2009) Environ. Sci. Technol., 43, pp. 7285-7290
dc.descriptionFabrega, J., Renshaw, J.C., Lead, J.R., Interactions of silver nanoparticles with pseudomonas putida biofilms (2009) Environ. Sci. Technol., 43, pp. 9004-9009
dc.descriptionFrazier, S.W., Nowack, K.O., Goins, K.M., Cannon, F.S., Kaplan, L.A., Hatcher, P.G., Characterization of organic matter from natural waters using tetramethylammonium hydroxide thermochemolysis GC-MS (2003) J. Anal. Appl. Pyrol., 70, pp. 99-128
dc.descriptionGao, J., Youn, S., Hovsepyan, A., Llaneza, V.L., Wang, Y., Bitton, G., Bonzongo, J.C.J., Dispersion and toxicity of selected manufactured nanomaterials in Natural River water samples: effects of water chemical composition (2009) Environ. Sci. Technol., 43, pp. 3322-3328
dc.descriptionGao, J., Powers, K., Wang, Y., Zhou, H.Y., Roberts, S.M., Moudgil, B.M., Koopman, B., Barber, D.S., Influence of Suwannee River humic acid on particle properties and toxicity of silver nanoparticles (2012) Chemosphere, 89, pp. 96-101
dc.descriptionGatselou, V.A., Giokas, D.L., Vlessidis, A.G., Determination of dissolved organic matter based on UV-light induced reduction of ionic silver to metallic nanoparticles by humic and fulvic acids (2014) Anal. Chim. Acta, 812, pp. 121-128
dc.descriptionGhosh, S., Mashayekhi, H., Bhowmik, P., Xing, B.S., Colloidal stability of Al2O3 nanoparticles as affected by coating of structurally different humic acids (2010) Langmuir, 26, pp. 873-879
dc.descriptionGibson, C.T., Turner, I.J., Roberts, C.J., Lead, J.R., Quantifying the dimensions of nanoscale organic surface layers in natural waters (2007) Environ. Sci. Technol., 41, pp. 1339-1344
dc.descriptionGrillo, R., dos Santos, N.Z.P., Maruyama, C.R., Rosa, A.H., de Lima, R., Fraceto, L.F., Poly(epsilon-caprolactone)nanocapsules as carrier systems for herbicides: physico-chemical characterization and genotoxicity evaluation (2012) J. Hazard. Mater., 231, pp. 1-9
dc.descriptionGrillo, R., Pereira, A.E.S., Nishisaka, C.S., Lima, R., Oehlke, K., Greiner, R., Fraceto, L.F., Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control (2014) J. Hazard Mater., 278, pp. 163-171
dc.descriptionHandy, R.D., Owen, R., Valsami-Jones, E., The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs (2008) Ecotoxicology, 17, pp. 315-325
dc.descriptionHaroune, L., Salaun, M., Menard, A., Legault, C.Y., Bellenger, J.P., Photocatalytic degradation of carbamazepine and three derivatives using TiO2 and ZnO: effect of pH, ionic strength, and natural organic matter (2014) Sci. Total Environ., 475, pp. 16-22
dc.descriptionHermans, T.M., Broeren, M.A.C., Gomopoulos, N., van der Schoot, P., van Genderen, M.H.P., Sommerdijk, N.A.J.M., Fytas, G., Meijer, E.W., Self-assembly of soft nanoparticles with tunable patchiness (2009) Nat. Nanotechnol., 4, pp. 721-726
dc.descriptionHu, J.D., Zevi, Y., Kou, X.M., Xiao, J., Wang, X.J., Jin, Y., Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions (2010) Sci. Total Environ., 408, pp. 3477-3489
dc.descriptionHyung, H., Kim, J.H., Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters (2008) Environ. Sci. Technol., 42, pp. 4416-4421
dc.descriptionHyung, H., Fortner, J.D., Hughes, J.B., Kim, J.H., Natural organic matter stabilizes carbon nanotubes in the aqueous phase (2007) Environ. Sci. Technol., 41, pp. 179-184
dc.descriptionIrache, J.M., Esparza, I., Gamazo, C., Agueros, M., Espuelas, S., Nanomedicine: Novel approaches in human and veterinary therapeutics (2011) Vet. Parasitol., 180, pp. 47-71
dc.descriptionIsaacson, C.W., Kleber, M., Field, J.A., Quantitative analysis of fullerene nanomaterials in environmental systems: a critical review (2009) Environ. Sci. Technol., 43, pp. 6463-6474
dc.descriptionJiang, X.J., Tong, M.P., Kim, H., Influence of natural organic matter on the transport and deposition of zinc oxide nanoparticles in saturated porous media (2012) J. Colloid Interf. Sci., 386, pp. 34-43
dc.descriptionJohnson, R.L., Johnson, G.O., Nurmi, J.T., Tratnyek, P.G., Natural organic matter enhanced mobility of nano zerovalent iron (2009) Environ. Sci. Technol., 43, pp. 5455-5460
dc.descriptionKah, M., Hofmann, T., Nanopesticide research: current trends and future priorities (2014) Environ. Int., 63, pp. 224-235
dc.descriptionKah, M., Beulke, S., Tiede, K., Hofmann, T., Nanopesticides: state of knowledge, environmental fate, and exposure modeling (2013) Crit. Rev. Environ. Sci. Tech., 43, pp. 1823-1867
dc.descriptionKahru, A., Dubourguier, H.C., From ecotoxicology to nanoecotoxicology (2010) Toxicology, 269, pp. 105-119
dc.descriptionKang, S., Mauter, M.S., Elimelech, M., Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent (2009) Environ. Sci. Technol., 43, pp. 2648-2653
dc.descriptionKango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., Kumar, R., Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites-a review (2013) Prog. Polym. Sci., 38, pp. 1232-1261
dc.descriptionKhot, L.R., Sankaran, S., Maja, J.M., Ehsani, R., Schuster, E.W., Applications of nanomaterials in agricultural production and crop protection: a review (2012) Crop. Prot., 35, pp. 64-70
dc.descriptionKim, J.Y., Kim, K.T., Lee, B.G., Lim, B.J., Kim, S.D., Developmental toxicity of Japanese medaka embryos by silver nanoparticles and released ions in the presence of humic acid (2013) Ecotox Environ. Safe, 92, pp. 57-63
dc.descriptionKumar, A., Sawant, K.K., Solid lipid nanoparticle-incorporated gel: the future treatment for skin infections? (2013) Nanomedicine-UK, 8, pp. 1901-1903
dc.descriptionLadj, R., Bitar, A., Eissa, M.M., Fessi, H., Mugnier, Y., Le Dantec, R., Elaissari, A., Polymer encapsulation of inorganic nanoparticles for biomedical applications (2013) Int. J. Pharm., 458, pp. 230-241
dc.descriptionLapresta-Fernandez, A., Fernandez, A., Blasco, J., Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms (2012) Trac-Trend Anal. Chem., 32, pp. 40-59
dc.descriptionLevard, C., Hotze, E.M., Lowry, G.V., Brown, G.E., Environmental transformations of silver nanoparticles: impact on stability and toxicity (2012) Environ. Sci. Technol., 46, pp. 6900-6914
dc.descriptionLi, K.G., Chen, Y.S., Effect of natural organic matter on the aggregation kinetics of CeO2 nanoparticles in KCl and CaCl2 solutions: measurements and modeling (2012) J. Hazard. Mater., 209, pp. 264-270
dc.descriptionLi, D., Lyon, D.Y., Li, Q., Alvarez, P.J.J., Effect of soil sorption and aquatic natural organic matter on the antibacterial activity of a fullerene water suspension (2008) Environ. Toxicol. Chem., 27, pp. 1888-1894
dc.descriptionLi, Q.L., Xie, B., Hwang, Y.S., Xu, Y.J., Kinetics of C-60 fullerene dispersion in water enhanced by natural organic matter and sunlight (2009) Environ. Sci. Technol., 43, pp. 3574-3579
dc.descriptionLi, Z.Q., Greden, K., Alvarez, P.J.J., Gregory, K.B., Lowry, G.V., Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli (2010) Environ. Sci. Technol., 44, pp. 3462-3467
dc.descriptionLi, M.H., Pokhrel, S., Jin, X., Madler, L., Damoiseaux, R., Hoek, E.M.V., Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped zno nanoparticles in aquatic media (2011) Environ. Sci. Technol., 45, pp. 755-761
dc.descriptionLi, M., Lin, D.H., Zhu, L.Z., Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli (2013) Environ. Pollut., 173, pp. 97-102
dc.descriptionLiang, L., Lv, J.T., Luo, L., Zhang, J., Zhang, S.Z., Influences of surface-coated fulvic and humic acids on the adsorption of metal cations to SiO2 nanoparticles (2011) Colloid Surface A, 389, pp. 27-32
dc.descriptionLin, D.H., Ji, J., Long, Z.F., Yang, K., Wu, F.C., The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp. (2012) Water Res., 46, pp. 4477-4487
dc.descriptionLitvin, V.A., Minaev, B.F., Spectroscopy study of silver nanoparticles fabrication using synthetic humic substances and their antimicrobial activity (2013) Spectrochim. Acta A, 108, pp. 115-122
dc.descriptionLitvin, V.A., Minaev, B.F., The size-controllable, one-step synthesis and characterization of gold nanoparticles protected by synthetic humic substances (2014) Mater. Chem. Phys., 144, pp. 168-178
dc.descriptionLitvin, V.A., Galagan, R.L., Minaev, B.F., Kinetic and mechanism formation of silver nanoparticles coated by synthetic humic substances (2012) Colloid Surface A, 414, pp. 234-243
dc.descriptionLiu, J.F., Zhao, Z.S., Jiang, G.B., Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water (2008) Environ. Sci. Technol., 42, pp. 6949-6954
dc.descriptionLiu, X.Y., Wazne, M., Han, Y., Christodoulatos, C., Jasinkiewicz, K.L., Effects of natural organic matter on aggregation kinetics of boron nanoparticles in monovalent and divalent electrolytes (2010) J. Colloid Interf. Sci., 348, pp. 101-107
dc.descriptionLiu, X., Jin, X., Cao, B., Tang, C.Y., Bactericidal activity of silver nanoparticles in environmentally relevant freshwater matrices: influences of organic matter and chelating agent (2013) J. Environ. Chem. Eng., 2, pp. 525-531
dc.descriptionLoosli, F., Le Coustumer, P., Stoll, S., TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability (2013) Water Res., 47, pp. 6052-6063
dc.descriptionLövestam, G., Rauscher, H., Roebben, G., Klüttgen, B.S., Gibson, N., Putaud, J.P., Stamm, H., (2010) Considerations on a Definition of Nanomaterial for Regulatory Purposes, , Publications Office of the European Union, Luxembourg
dc.descriptionLu, J.J., Li, Y., Yan, X.M., Shi, B.Y., Wang, D.S., Tang, H.X., Sorption of atrazine onto humic acids (HAs) coated nanoparticles (2009) Colloid Surface A, 347, pp. 90-96
dc.descriptionMa, P.C., Siddiqui, N.A., Marom, G., Kim, J.K., Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review (2010) Compos. Part A-Appl. S, 41, pp. 1345-1367
dc.descriptionMangematin, V., Walsh, S., The future of nanotechnologies (2012) Technovation, 32, pp. 157-160
dc.descriptionMartin-Neto, L., Vieira, E.M., Sposito, G., Mechanism of atrazine sorption by humic acid: a spectroscopic study (1994) Environ. Sci. Technol., 28, pp. 1867-1873
dc.descriptionMashayekhi, H., Ghosh, S., Du, P., Xing, B.S., Effect of natural organic matter on aggregation behavior of C-60 fullerene in water (2012) J. Colloid Interf. Sci., 374, pp. 111-117
dc.descriptionMatilainen, A., Vepsalainen, M., Sillanpaa, M., Natural organic matter removal by coagulation during drinking water treatment: a review (2010) Adv. Colloid Interf., 159, pp. 189-197
dc.descriptionMaurer-Jones, M.A., Gunsolus, I.L., Murphy, C.J., Haynes, C.L., Toxicity of engineered nanoparticles in the environment (2013) Anal. Chem., 85, pp. 3036-3049
dc.descriptionMaynard, A.D., Don't define nanomaterials (2011) Nature, 475, p. 31
dc.descriptionMert, E.H., Yildirim, H., Uzumcu, A.T., Kavas, H., Synthesis and characterization of magnetic polyHIPEs with humic acid surface modified magnetic iron oxide nanoparticles (2013) React. Funct. Polym., 73, pp. 175-181
dc.descriptionMohd Omar, F., Abdul Aziz, H., Stoll, S., Aggregation and disaggregation of ZnO nanoparticles: influence of pH and adsorption of Suwannee River humic acid (2014) Sci. Total Environ., pp. 195-201
dc.descriptionNiu, H.Y., Zhang, D., Zhang, S.X., Zhang, X.L., Meng, Z.F., Cai, Y.Q., Humic acid coated Fe3O4 magnetic nanoparticles as highly efficient Fenton-like catalyst for complete mineralization of sulfathiazole (2011) J. Hazard. Mater., 190, pp. 559-565
dc.descriptionNowack, B., Bucheli, T.D., Occurrence, behavior and effects of nanoparticles in the environment (2007) Environ. Pollut., 150, pp. 5-22
dc.descriptionPallem, V.L., Stretz, H.A., Wells, M.J.M., Evaluating aggregation of gold nanoparticles and humic substances using fluorescence spectroscopy (2009) Environ. Sci. Technol., 43, pp. 7531-7535
dc.descriptionPaques, J.P., van der Linden, E., van Rijn, C.J., Sagis, L.M., Preparation methods of alginate nanoparticles (2014) Adv. Colloid Interf. Sci.
dc.descriptionPeng, L., Qin, P.F., Lei, M., Zeng, Q.R., Song, H.J., Yang, J., Shao, J.H., Gu, J.D., Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water (2012) J. Hazard. Mater., 209, pp. 193-198
dc.descriptionPereira, A.E., Grillo, R., Mello, N.F., Rosa, A.H., Fraceto, L.F., Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment (2014) J. Hazard. Mater., 268, pp. 207-215
dc.descriptionPignatello, J.J., Dynamic interactions of natural organic matter and organic compounds (2012) J. Soil Sediment, 12, pp. 1241-1256
dc.descriptionProbst, C.E., Zrazhevskiy, P., Bagalkot, V., Gao, X.H., Quantum dots as a platform for nanoparticle drug delivery vehicle design (2013) Adv. Drug Deliv. Rev., 65, pp. 703-718
dc.descriptionQu, X.L., Hwang, Y.S., Alvarez, P.J.J., Bouchard, D., Li, Q.L., UV irradiation and humic acid mediate aggregation of aqueous fullerene (nC(60)) nanoparticles (2010) Environ. Sci. Technol., 44, pp. 7821-7826
dc.descriptionQuik, J.T.K., Lynch, I., Van Hoecke, K., Miermans, C.J.H., De Schamphelaere, K.A.C., Janssen, C.R., Dawson, K.A., Van de Meent, D., Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water (2010) Chemosphere, 81, pp. 711-715
dc.descriptionRao, J.P., Geckeler, K.E., Polymer nanoparticles: preparation techniques and size-control parameters (2011) Prog. Polym. Sci., 36, pp. 887-913
dc.descriptionRitson, J.P., Graham, N.J.D., Templeton, M.R., Clark, J.M., Gough, R., Freeman, C., The impact of climate change on the treatability of dissolved organic matter (DOM) in upland water supplies: a UK perspective (2014) Sci. Total Environ., 473, pp. 714-730
dc.descriptionRocha, J.C., Rosa, A.H., Cardoso, A.A., (2009) Introdução à Química Ambiental, , Bookman, Porto Alegre
dc.descriptionRoco, M.C., The long view of nanotechnology development: the national nanotechnology initiative at 10years (2011) J. Nanopart. Res., 13, pp. 427-445
dc.descriptionRomanello, M.B., de Cortalezzi, M.M.F., An experimental study on the aggregation of TiO2 nanoparticles under environmentally relevant conditions (2013) Water Res., 47, pp. 3887-3898
dc.descriptionRosa, A.H., Goveia, D., Bellin, I.C., Tonello, P.S., Antunes, M.L.P., Filho, N.L.D., Filho, U.P.R., Lability study of Cu(II), Cd(II), Mn(II) and Ni(II) complexed by aquatic humic substances using organomodified cellulose membranes (2007) Quim. Nova, 30, pp. 59-65
dc.descriptionSaleh, N.B., Pfefferle, L.D., Elimelech, M., Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications (2008) Environ. Sci. Technol., 42, pp. 7963-7969
dc.descriptionSaleh, N.B., Pfefferle, L.D., Elimelech, M., Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes (2010) Environ. Sci. Technol., 44, pp. 2412-2418
dc.descriptionSantschi, P.H., Guo, L., Means, J.C., Ravichandran, M., Natural organic matter binding of trace metals and trace organic contaminants in estuaries (1999) Biogeochemistry of Gulf of Mexico Estuaries, pp. 347-380. , In: Bianchi, T.S., Pennock, J.R., Twilley, R.R. (Eds.). John Wiley & Sons
dc.descriptionSchwabe, F., Schulin, R., Limbach, L.K., Stark, W., Burge, D., Nowack, B., Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture (2013) Chemosphere, 91, pp. 512-520
dc.descriptionSenesi, N., Loffredo, E., Metal ion complexation by soil humic substances (2005) Chemical Processes in Soil, pp. 563-618. , In: Sparks, D.l., Tabatabai, M.A. (Eds.). Madison, WI
dc.descriptionSenesi, N., Dorazio, V.D., Miano, T.M., Adsorption mechanisms of s-triazine and bipyridylium herbicides on humic acids from hop field soils (1995) Geoderma, 66, pp. 273-283
dc.descriptionSharma, V.K., Siskova, K.M., Zboril, R., Gardea-Torresdey, J.L., Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity (2014) Adv. Colloid Interface Sci., 204, pp. 15-34
dc.descriptionStankus, D.P., Lohse, S.E., Hutchison, J.E., Nason, J.A., Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents (2011) Environ. Sci. Technol., 45, pp. 3238-3244
dc.descriptionTang, W.W., Zeng, G.M., Gong, J.L., Liang, J., Xu, P., Zhang, C., Huang, B.B., Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review (2014) Sci. Total Environ., pp. 1014-1027
dc.descriptionTartaglia, P., Sciortino, F., Association of limited valence patchy particles in two dimensions (2010) J. Phys-Condens Mat., p. 22
dc.descriptionTerashima, M., Nagao, S., Solubilization of [60]fullerene in water by aquatic humic substances (2007) Chem. Lett., 36, pp. 302-303
dc.descriptionThio, B.J.R., Zhou, D.X., Keller, A.A., Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles (2011) J. Hazard. Mater., 189, pp. 556-563
dc.descriptionvan den Berg, L.J.L., Shotbolt, L., Ashmore, M.R., Dissolved organic carbon (DOC) concentrations in UK soils and the influence of soil, vegetation type and seasonality (2012) Sci. Total Environ., 427, pp. 269-276
dc.descriptionVan Hoecke, K., De Schamphelaere, K.A.C., Ramirez-Garcia, S., Van der Meeren, P., Smagghe, G., Janssen, C.R., Influence of alumina coating on characteristics and effects of SiO2 nanoparticles in algal growth inhibition assays at various pH and organic matter contents (2011) Environ. Int., 37, pp. 1118-1125
dc.descriptionVan Hoecke, K., De Schamphelaere, K.A.C., Van der Meeren, P., Smagghe, G., Janssen, C.R., Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength (2011) Environ. Pollut., 159, pp. 970-976
dc.descriptionWandruszka, R.V., Humic acids: their detergent qualities and potential uses in pollution remediation (2000) Geochem. Trans., 2, pp. 1-10
dc.descriptionWang, Q., Cissoko, N., Zhou, M., Xu, X.H., Effects and mechanism of humic acid on chromium (VI) removal by zero-valent iron (Fe-0) nanoparticles (2011) Phys. Chem. Earth, 36, pp. 442-446
dc.descriptionWang, Y., Zhu, L.Y., Dong, Z., Xie, S.Y., Chen, X.J., Lu, M.M., Wang, X.F., Zhou, W.Z., Preparation and stability study of norfloxacin-loaded solid lipid nanoparticle suspensions (2012) Colloid Surface B, 98, pp. 105-111
dc.descriptionXu, B., Song, R.G., Wang, C., Preparation and characterization of Ag, Au and Ti metal nanoparticles colloids by pulsed laser ablation in liquids (2012) Adv. Mater., PART 13 (415-417), pp. 648-651
dc.descriptionYang, S.P., Bar-Ilan, O., Peterson, R.E., Heideman, W., Hamers, R.J., Pedersen, J.A., Influence of humic acid on titanium dioxide nanoparticle toxicity to developing zebrafish (2013) Environ. Sci. Technol., 47, pp. 4718-4725
dc.descriptionYang, Y.K., Nakada, N., Nakajima, R., Yasojima, M., Wang, C., Tanaka, H., PH, ionic strength and dissolved organic matter alter aggregation of fullerene C-60 nanoparticles suspensions in wastewater (2013) J. Hazard. Mater., 244, pp. 582-587
dc.descriptionZhang, Y., Chen, Y.S., Westerhoff, P., Crittenden, J., Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles (2009) Water Res., 43, pp. 4249-4257
dc.descriptionZhang, Z., Cissoko, N., Wo, J.J., Xu, X.H., Factors influencing the dechlorination of 2,4-dichlorophenol by Ni-Fe nanoparticles in the presence of humic acid (2009) J. Hazard. Mater., 165, pp. 78-86
dc.descriptionZhang, H.Y., Smith, J.A., Oyanedel-Craver, V., The effect of natural water conditions on the anti-bacterial performance and stability of silver nanoparticles capped with different polymers (2012) Water Res., 46, pp. 691-699
dc.descriptionZhang, X., Kah, M., Jonker, M.T.O., Hofmann, T., Dispersion state and humic acids concentration-dependent sorption of pyrene to carbon nanotubes (2012) Environ. Sci. Technol., 46, pp. 7166-7173
dc.descriptionZhang, W., Rattanaudompol, U.S., Li, H., Bouchard, D., Effects of humic and fulvic acids on aggregation of aqu/nC(60) nanoparticles (2013) Water Res., 47, pp. 1793-1802
dc.descriptionZhang, X., Zhang, P.Y., Wu, Z., Zhang, L., Zeng, G.M., Zhou, C.J., Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles (2013) Colloid Surface A, 435, pp. 85-90
dc.descriptionZhao, J., Wang, Z.Y., Dai, Y.H., Xing, B.S., Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter (2013) Water Res., 47, pp. 4169-4178
dc.descriptionZhou, D.X., Keller, A.A., Role of morphology in the aggregation kinetics of ZnO nanoparticles (2010) Water Res., 44, pp. 2948-2956
dc.descriptionZhou, X.Z., Shu, L., Zhao, H.B., Guo, X.Y., Wang, X.L., Tao, S., Xing, B.S., Suspending multi-walled carbon nanotubes by humic acids from a peat soil (2012) Environ. Sci. Technol., 46, pp. 3891-3897
dc.languageen
dc.publisherElsevier Ltd
dc.relationChemosphere
dc.rightsfechado
dc.sourceScopus
dc.titleEngineered Nanoparticles And Organic Matter: A Review Of The State-of-the-art
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución