dc.creatorDuarte L.T.
dc.creatorNadalin E.Z.
dc.creatorFilho K.N.
dc.creatorZanetti R.A.
dc.creatorRomano J.M.T.
dc.creatorTygel M.
dc.date2012
dc.date2015-06-25T20:25:09Z
dc.date2015-11-26T15:21:16Z
dc.date2015-06-25T20:25:09Z
dc.date2015-11-26T15:21:16Z
dc.date.accessioned2018-03-28T22:30:47Z
dc.date.available2018-03-28T22:30:47Z
dc.identifier9781467310680
dc.identifierEuropean Signal Processing Conference. , v. , n. , p. 1494 - 1498, 2012.
dc.identifier22195491
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84869761549&partnerID=40&md5=7555f19eea1cbcdacc5377598be32f1f
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/90399
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/90399
dc.identifier2-s2.0-84869761549
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1260181
dc.descriptionIn this work, we investigate the application of the recently introduced signal decomposition method known as robust principal component analysis (RPCA) to the problem of wave separation in seismic data. The motivation of our research comes from the observation that the elements of the decomposition performed by RPCA can be associated with particular structures that often arise in seismic data. Results obtained considering two different situations, the separation of crossing events and the separation of diffracted waves from reflected ones, confirms that RPCA is a promising tool in seismic signal processing, outperforming the classical singular value decomposition (SVD) and the extension of the SVD based on independent component analysis in most cases. © 2012 EURASIP.
dc.description
dc.description
dc.description1494
dc.description1498
dc.descriptionGlangeaud, F., Mari, J.-L., (1994) Wave Separation, , Technip Editions
dc.descriptionSheriff, R.E., Geldart, L.P., (1995) Exploratory Seismology, , Cambridge University Press
dc.descriptionYilmaz, O., (2001) Seismic Data Analysis: Processing, Inversion and Interpretation of Seismic Data, 1. , SEG, second edition
dc.descriptionFreire, S.L.M., Ulrych, T.J., Application of singular value decomposition to vertical seismic profiling (1988) Geophysics, 53, pp. 778-785
dc.descriptionKirlin, R.L., Done, W.J., (1999) Covariance Analysis for Seismic Signal Processing, , Society of Exploration Geophysicists
dc.descriptionYedlin, M., Jones, I.F., Narod, B.B., Application of the karhunen-love transform to diffraction separation (1987) IEEE Transactions on Acoustics, Speech and Signal Processing, 35 (1), pp. 2-8
dc.descriptionPorsani, M.J., Silva, M.G., Melo, P.E.M., Ursin, B., Svd filtering applied to ground-roll attenuation (2010) Journal of Geophysics and Engineering, 7, pp. 284-289
dc.descriptionVrabie, V.D., Mars, J.I., Lacoume, J.-L., Modified singular value decomposition by means of independent component analysis (2004) Signal Processing, (84), pp. 645-652
dc.descriptionBekara, M., Van Der Baan, M., Local svd/ica for signal enhancement of pre-stack seismic data (2006) 68th EAGE Conference & Exhibition
dc.descriptionCandes, E.J., Li, X., Ma, Y., Wright, J., Robust principal component analysis? (2011) Journal of the ACM, 58, pp. 1-37
dc.descriptionChandrasekaran, V., Sanghavi, S., Parrilo, P.A., Willsky, A.S., Sparse and low-rank matrix decompositions (2009) Proc. 47th Ann. Allerton Conf. Communication, Control, and Computing Allerton, pp. 962-967
dc.descriptionHuang, P.-S., Chen, S.D., Smaragdis, P., Hasegawa-Johnson, M., Singing-voice separation from monaural recordings using robust principal component analysis (2012) Proc. of the IEEE ICASSP
dc.descriptionZhou, T., Tao, D., Godec: Randomized low-rank & sparse matrix decomposition in noisy case (2011) Proceeding of the International Conference on Machine Learning (ICML)
dc.descriptionDing, X., He, L., Carin, L., Bayesian robust principal component analysis (2011) IEEE Transactions on Image Processing, 20 (12), pp. 3419-3430
dc.languageen
dc.publisher
dc.relationEuropean Signal Processing Conference
dc.rightsfechado
dc.sourceScopus
dc.titleSeismic Wave Separation By Means Of Robust Principal Component Analysis
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución