dc.creatorMalaverri J.E.G.
dc.creatorMedeiros C.B.
dc.date2012
dc.date2015-06-25T20:25:07Z
dc.date2015-11-26T15:21:06Z
dc.date2015-06-25T20:25:07Z
dc.date2015-11-26T15:21:06Z
dc.date.accessioned2018-03-28T22:30:37Z
dc.date.available2018-03-28T22:30:37Z
dc.identifier
dc.identifierProceedings Of The Brazilian Symposium On Geoinformatics. , v. , n. , p. 128 - 139, 2012.
dc.identifier21794847
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84883001411&partnerID=40&md5=f35742df0d6fe7b9942fa782b660d040
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/90387
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/90387
dc.identifier2-s2.0-84883001411
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1260144
dc.descriptionData quality is a common concern in a wide range of domains. Since agriculture plays an important role in the Brazilian economy, it is crucial that the data be useful and with a proper level of quality for the decision making process, planning activities, among others. Nevertheless, this requirement is not often taken into account when different systems and databases are modeled. This work presents a review about data quality issues covering some efforts in agriculture and geospatial science to tackle these issues. The goal is to help researchers and practitioners to design better applications. In particular, we focus on the different dimensions of quality and the approaches that are used to measure them.
dc.description
dc.description
dc.description128
dc.description139
dc.descriptionBabu, S., Widom, J., Continuous queries over data streams (2001) SIGMOD Rec., 30 (3), pp. 109-120
dc.descriptionBallou, D., Wang, R., Pazer, H., Tayi, G.K., Modeling information manufacturing systems to determine information product quality (1998) Manage. Sci., 44, pp. 462-484
dc.descriptionBarbosa, I., Casanova, M.A., Trust indicator for decisions based on geospatial data (2011) Proc. XII Brazilian Symposium on GeoInformatics, pp. 49-60
dc.descriptionBlake, R., Mangiameli, P., The effects and interactions of data quality and problem complexity on classification (2011) J. Data and Information Quality, pp. 281-828
dc.descriptionBobrowski, M., Marré, M., Yankelevich, D., A homogeneous framework to measure data quality (1999) Proc. IQ, pp. 115-124. , MIT
dc.description(2012) Center of Advanced Studies in Applied Economics, , http://cepea.esalq.usp.br/pib/, Accessed in June 2012
dc.descriptionChapman, A.D., (2005) Principles of Data Quality, , Global Biodiversity Information Facility, Copenhagen
dc.descriptionChrisman, N.R., The role of quality information in the long-term functioning of a geographic information system (1984) Cartographica, 21 (2-3), pp. 79-87
dc.descriptionCongalton, R.G., Green, K., (2009) Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, (13). , CRC Press, Boca Raton, FL, 2 edition
dc.description(2012) Food and Agriculture Organization of the United Nations, , www.fao.org/countrystat, CountrySTAT Accessed on March 2012
dc.descriptionDai, C., Lin, D., Bertino, E., Kantarcioglu, M., An approach to evaluate data trustworthiness based on data provenance (2008) Proc. of the 5th VLDB Workshop on Secure Data Management, pp. 82-98. , Berlin, Heidelberg. Springer-Verlag
dc.description(2008) EFarms, , http://proj.lis.ic.unicamp.br/efarms/, Accessed in June 2012
dc.descriptionLand quality indicators and their use in sustainable agriculture and rural development (1997) FAO Land and Water Bulletin, , FAO Accessed in January 2012
dc.description(2012) Food and Agriculture Organization of the United Nations, , http://www.fao.org/, Accessed on March 2012
dc.descriptionContent standard for digital geospatial metadata FGDC-STD-001-1998 (1998) Technical Report, US Geological Survey, , FGDC
dc.descriptionGoodchild, M.F., Li, L., Assuring the quality of volunteered geographic information (2012) Spatial Statistics, 1, pp. 110-120
dc.descriptionHartig, O., Zhao, J., Using web data provenance for quality assessment (2009) Proc. of the Workshop on Semantic Web and Provenance Management at ISWC
dc.description(2003) Data Quality Assessment Framework, , http://dsbb.imf.org/, International Monetary Fund Accessed on January 2012
dc.description(2003) Geographic Information - Metadata, , http://www.iso.org/iso/, 19115 Accessed on January 2012
dc.descriptionKyeyago, F.O., Zake, E.M., Mayinza, S., The construction of an international agricultural data quality assessment framework (ADQAF) (2010) The 5th Int. Conf. on Agricultural Statistics (ICAS V)m
dc.descriptionLee, Y.W., Strong, D.M., Kahn, B.K., Wang, R.Y., AIMQ: A methodology for information quality assessment (2002) Information & Management, 40 (2), pp. 133-146
dc.descriptionLunetta, R.S., Lyon, J.G., (2004) Remote Sensing and GIS Accuracy Assessment, , CRC Press
dc.descriptionMadnick, S., Zhu, H., Improving data quality through effective use of data semantics (2006) Data Knowl. Eng., 59, pp. 460-475
dc.descriptionMadnick, S.E., Wang, R.Y., Lee, Y.W., Zhu, H., Overview and framework for data and information quality research (2009) J. Data and Information Quality, pp. 121-222
dc.descriptionMedeiros, C.B., De Alencar, A.C., Data quality and interoperability in GIS (1999) Proc. of GeoInfo, , In portuguese
dc.descriptionMoraes, R.A., Rocha, J.V., Imagens de coeficiente de qualidade (Quality) e de confiabilidade (Reliability) para seleção de pixels em imagens de NDVI do sensor MODIS para monitoramento da cana-de-açúcar no estado de São Paulo (2011) Proc. of Brazilian Remote Sensing Symposium
dc.descriptionNaumann, F., From databases to information systems - Information quality makes the difference (2001) Proc. IQ
dc.descriptionNaumann, F., Rolker, C., Assessment methods for information quality criteria (2000) IQ, pp. 148-162. , MIT
dc.descriptionParssian, A., Managerial decision support with knowledge of accuracy and completeness of the relational aggregate functions (2006) Decis. Support Syst., 42, pp. 1494-1502
dc.descriptionPierce, E.M., Assessing data quality with control matrices (2004) Commun. ACM, 47, pp. 82-86
dc.descriptionPipino, L.L., Lee, Y.W., Wang, R.Y., Data quality assessment (2002) Commun. ACM, 45, pp. 211-218
dc.descriptionPrat, N., Madnick, S., Measuring data believability: A provenance approach (2008) Proc. of the 41st Hawaii Int. Conf. on System Sciences, p. 393
dc.descriptionRedman, T.C., (2001) Data Quality: The Field Guide, , Digital Pr. [u.a.]
dc.descriptionScholten, H., Ten Cate, A.J.U., Quality assessment of the simulation modeling process (1999) Comput. Electron. Agric., 22 (2-3), pp. 199-208
dc.descriptionShankaranarayanan, G., Cai, Y., Supporting data quality management in decision-making (2006) Decis. Support Syst., 42, pp. 302-317
dc.description(2009) TIPS 12: Data Quality Standards, , http://www.usaid.gov/policy/evalweb/documents/TIPS-DataQualityStandards. pdf, U.S. Agency for International Development Accessed in January 2012
dc.descriptionWang, R.Y., Strong, D.M., Beyond accuracy: What data quality means to data consumers (1996) Journal of Management Information Systems, 12 (4), pp. 5-34
dc.descriptionWidom, J., Trio: A system for integrated management of data, accuracy, and lineage (2005) Proc. of the 2nd Biennial Conf. on Innovative Data Systems Research (CIDR)
dc.descriptionXie, J., Burstein, F., Using machine learning to support resource quality assessment: An adaptive attribute-based approach for health information portals (2011) Proc. of the 16th Int. Conf. on Database Systems for Advanced Applications
dc.languageen
dc.publisher
dc.relationProceedings of the Brazilian Symposium on GeoInformatics
dc.rightsfechado
dc.sourceScopus
dc.titleData Quality In Agriculture Applications
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución