dc.creatorKowaltowski A.J.
dc.creatorNetto L.E.S.
dc.creatorVercesi A.E.
dc.date1998
dc.date2015-06-30T15:07:57Z
dc.date2015-11-26T15:21:05Z
dc.date2015-06-30T15:07:57Z
dc.date2015-11-26T15:21:05Z
dc.date.accessioned2018-03-28T22:30:37Z
dc.date.available2018-03-28T22:30:37Z
dc.identifier
dc.identifierJournal Of Biological Chemistry. , v. 273, n. 21, p. 12766 - 12769, 1998.
dc.identifier219258
dc.identifier10.1074/jbc.273.21.12766
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0032557424&partnerID=40&md5=e6586136c75785d3f3b3058f1a97dfb6
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/100805
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/100805
dc.identifier2-s2.0-0032557424
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1260143
dc.descriptionMitochondrial swelling and membrane protein thiol oxidation associated with mitochondrial permeability transition induced by Ca2+ and inorganic phosphate are inhibited in a dose-dependent manner either by catalase, the thiol-specific antioxidant enzyme (TSA), a protein recently demonstrated to present thiol peroxidase activity, or ebselen, a selenium-containing heterocycle which also possesses thiol peroxidase activity. This inhibition of mitochondrial permeability transition is due to the removal of mitochondrial-generated H2O2 which can easily diffuse to the extramitochondrial space. Whereas ebselen required the presence of reduced glutathione as a reductant to grant its protective effect, TSA was fully reduced by mitochondrial components. Decrease in the oxygen concentration of the reaction medium also inhibits mitochondrial permeabilization and membrane protein thiol oxidation, in a concentration-dependent manner. The results presented in this report confirm that mitochondrial permeability transition induced by Ca2+ and inorganic phosphate is reactive oxygen species- dependent. The possible importance of TSA as an intracellular antioxidant, avoiding the onset of mitochondrial permeability transition, is discussed in the text.
dc.description273
dc.description21
dc.description12766
dc.description12769
dc.descriptionGunter, T.E., Gunter, K.K., Sheu, S.-S., Gavin, C.E., (1994) Am. J. Physiol., 267, pp. C313-C339
dc.descriptionZoratti, M., Szabó, I., (1995) Biochim. Blophys. Acta, 1241, pp. 139-176
dc.descriptionLehninger, A.L., Vercesi, A.E., Bababunmi, E.A., (1978) Proc. Natl. Acad. Sci. U. S. A., 79, pp. 6842-6846
dc.descriptionVercesi, A.E., Kowaltowski, A.J., Grijalba, M.T., Meinicke, A.R., Castilho, R.F., (1997) Biosci. Rep., 17, pp. 43-52
dc.descriptionCastilho, R.F., Kowaltowski, A.J., Meinicke, A.R., Vercesi, A.E., (1995) Free Radical Biol. & Med., 18, pp. 479-486
dc.descriptionKowaltowski, A.J., Castilho, R.F., Vercesi, A.E., (1995) Am. J. Physiol., 269, pp. C141-C147
dc.descriptionValle, V.G.R., Fagian, M.M., Parentoni, L.S., Meinicke, A.R., Vercesi, A.E., (1993) Arch. Biockem. Biophys., 307, pp. 1-7
dc.descriptionKowaltowski, A.J., Castilho, R.F., Vercesi, A.E., (1996) FEBS Lett., 378, pp. 150-152
dc.descriptionKowaltowski, A.J., Castilho, R.F., Grijalba, M.T., Bechara, E.J.H., Vercesi, A.E., (1996) J. Biol. Chem., 271, pp. 2929-2934
dc.descriptionFagian, M.M., Pereira-da-Silva, L., Martins, I.S., Vercesi, A.E., (1990) J. Biol. Chem., 265, pp. 19955-19960
dc.descriptionCastilho, R.F., Kowaltowski, A.J., Vercesi, A.E., (1996) J. Bioenerg. Biomembr., 28, pp. 523-529
dc.descriptionScorrano, L., Petronilli, V., Bernardi, P., (1997) J. Biol. Chem., 272, pp. 12295-12299
dc.descriptionPastorino, J.G., Snyder, J.W., Serroni, A., Hoek, J.B., Farber, J.L., (1993) J. Biol. Chem., 268, pp. 13791-13798
dc.descriptionGriffiths, E., Halestrap, A.P., (1995) Biochem. J., 307, pp. 93-98
dc.descriptionZamzami, N., Hirsch, T., Dallaporta, B., Petit, P.X., Kroemer, G., (1997) J. Bioenerg. Biomembr., 29, pp. 185-193
dc.descriptionSkulachev, V.P., (1996) FEBS Lett., 397, pp. 7-10
dc.descriptionKim, K., Kim, I.H., Lee, K.-Y., Rhee, S.G., Stadtman, E.R., (1988) J. Biol. Chem., 263, pp. 4704-4711
dc.descriptionChae, H.Z., Robison, K., Poole, L.B., Church, G., Storz, G., Rhee, S.G., (1994) Proc. Natl. Acad. Sci. U. S. A., 91, pp. 7017-7021
dc.descriptionChae, H.Z., Chung, S.J., Rhee, S.G., (1994) J. Biol. Chem., 269, pp. 27670-27678
dc.descriptionNetto, L.E.S., Chae, H.Z., Kang, S.-W., Rhee, S.G., Stadtman, E.R., (1996) J. Biol. Chem., 271, pp. 15315-15321
dc.descriptionNogoceke, E., Gommel, D.U., Kieb, M., Kalisz, H.M., Flohé, L., (1997) Biol. Chem., 378, pp. 827-836
dc.descriptionKim, I.H., Kim, K., Rhee, S.G., (1989) Proc. Natl. Acad. Sci. U. S. A., 86, pp. 6018-6022
dc.descriptionWatabe, S., Kohno, H., Kouyama, H., Hiroi, T., Yago, N., Nakazawa, T., (1994) J. Biochem. (Tokyo), 115, pp. 648-654
dc.descriptionIshii, T., Kawane, T., Taketani, S., Bannai, S., (1995) Biochem. Biophys. Res. Commun., 216, pp. 970-975
dc.descriptionSies, H., (1993) Free Radical Biol. & Med., 14, pp. 313-323
dc.descriptionKowaltowski, A.J., Vercesi, A.E., Castilho, R.F., (1997) Biochim. Biophys. Acta, 1318, pp. 385-402
dc.descriptionBoveris, A., Martino, E., Stoppani, A.O.M., (1977) Anal. Biochem., 80, pp. 145-158
dc.descriptionChae, H.Z., Uhm, T.B., Rhee, S.G., (1994) Proc. Natl. Acad. Sci. U. S. A., 91, pp. 7022-7026
dc.descriptionTsuji, K., Copeland, N.G., Jenkins, N.A., Obinata, M., (1995) Biochem. J., 307, pp. 377-381
dc.descriptionZhang, P., Liu, B., Kang, S.W., Seo, M.S., Rhee, S.G., Obeid, L.M., (1997) J. Biol. Chem., 272, pp. 30615-30618
dc.languageen
dc.publisher
dc.relationJournal of Biological Chemistry
dc.rightsfechado
dc.sourceScopus
dc.titleThe Thiol-specific Antioxidant Enzyme Prevents Mitochondrial Permeability Transition: Evidence For The Participation Of Reactive Oxygen Species In This Mechanism
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución