dc.creatorSantos R.D.S.
dc.creatorFaria G.A.
dc.creatorGiles C.
dc.creatorLeite C.A.P.
dc.creatorBarbosa H.D.S.
dc.creatorArruda M.A.Z.
dc.creatorLongo C.
dc.date2012
dc.date2015-06-25T20:24:46Z
dc.date2015-11-26T15:20:32Z
dc.date2015-06-25T20:24:46Z
dc.date2015-11-26T15:20:32Z
dc.date.accessioned2018-03-28T22:30:04Z
dc.date.available2018-03-28T22:30:04Z
dc.identifier
dc.identifierAcs Applied Materials And Interfaces. , v. 4, n. 10, p. 5555 - 5561, 2012.
dc.identifier19448244
dc.identifier10.1021/am301444k
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84867812415&partnerID=40&md5=3a6ca8442ef1d24a7b0bb6572336022d
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/90301
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/90301
dc.identifier2-s2.0-84867812415
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1260015
dc.descriptionIron-doped TiO 2 (Fe:TiO 2) nanoparticles were synthesized by the sol-gel method (with Fe/Ti molar ratio corresponding to 1, 3, and 5%), followed by hydrothermal treatment, drying, and annealing. A similar methodology was used to synthesize TiO 2 and α-Fe 2O 3 nanoparticles. For comparison, a mixture hematite/titania, with Fe/Ti = 4% was also investigated. Characterization of the samples using Rietveld refinement of X-ray diffraction data revealed that TiO 2 consisted of 82% anatase and 18% brookite; for Fe:TiO 2, brookite increased to 30% and hematite was also identified (0.5, 1.0, and 1.2 wt % for samples prepared with 1, 3, and 5% of Fe/Ti). For hematite/titania mixture, Fe/Ti was estimated as 4.4%, indicating the Rietveld method reliability for estimation of phase composition. Because the band gap energy, estimated as 3.2 eV for TiO 2, gradually ranged from 3.0 to 2.7 eV with increasing Fe content at Fe:TiO 2, it can be assumed that a Fe fraction was also inserted as dopant in the TiO 2 lattice. Extended X-ray absorption fine structure spectra obtained for the Ti K-edge and Fe K-edge indicated that absorbing Fe occupied a Ti site in the TiO 2 lattice, but hematite features were not observed. Hematite particles also could not be identified in the images obtained by transmission electron microscopy, in spite of iron identification by elemental mapping, suggesting that hematite can be segregated at the grain boundaries of Fe:TiO 2. © 2012 American Chemical Society.
dc.description4
dc.description10
dc.description5555
dc.description5561
dc.descriptionChen, X., Mao, S.S., (2007) Chem. Rev., 107, p. 2891
dc.descriptionGrätzel, M., (2003) Photochem. Photobiol. C, 4, p. 145
dc.descriptionLongo, C., De Paoli, M.-A., (2003) J. Braz. Chem. Soc., 14, p. 889
dc.descriptionHagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H., (2010) Chem. Rev., 110, p. 6595
dc.descriptionLiu, Z., Li, Y., Li, C., Ya, J., Lei, E., Zhao, W., Zhao, D., Na, L., (2011) ACS Appl. Mater. Interfaces, 3, p. 1721
dc.descriptionLee, H., Hwang, D., Jo, S.M., Kim, D., Seo, Y., Kim, D.Y., (2012) ACS Appl. Mater. Interfaces, 4, p. 3308
dc.descriptionWalter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A., Lewis, N.S., (2010) Chem. Rev., 110, p. 6446
dc.descriptionFujishima, A., Zhang, X., Tryk, D.A., (2008) Surf. Sci. Rep., 63, p. 515
dc.descriptionOliveira, H.G., Nery, D.C., Longo, C., (2010) Appl. Catal., B, 93, p. 205
dc.descriptionAkpan, U.G., Hameed, B.H., (2010) Appl. Catal., A, 375, p. 1
dc.descriptionAsahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., (2001) Science, p. 269
dc.descriptionChoi, J., Park, H., Hoffmann, M., (2010) J. Phys. Chem. C, 114, p. 783
dc.descriptionKachina, A., Puzenat, E., Ould-Chikh, S., Geantet, C., Delichere, P., Afanasiev, P., (2012) Chem. Mater., 24, p. 636
dc.descriptionZhang, J., Pan, C., Fang, P., Wei, J., Xiong, R., (2010) ACS Appl. Mater. Interfaces, 2, p. 1173
dc.descriptionLiu, H., Wu, Y., Zhang, J., (2011) ACS Appl. Mater. Interfaces, 3, p. 1757
dc.descriptionPulsipher, D.I., Martin, I.T., Fisher, E.R., (2010) ACS Appl. Mater. Interfaces, 2, p. 1743
dc.descriptionZhu, S., Shi, T., Liu, W., Wei, S., Xie, Y., Fan, C., Li, Y., (2007) Phys. B, 396, p. 177
dc.descriptionQingping, W., Van De Krol, R., (2012) J. Am. Chem. Soc., 134, p. 9369
dc.descriptionWang, X.H., Li, J.-G., Kamiyama, H., Moriyoshi, Y., Ishigaki, T., (2006) J. Phys Chem B, 110, p. 6804
dc.descriptionSantos, R.S., Oliveira, H.G., Longo, C., (2009) Proceedings of SPIE: Solar Hydrogen and Nanotechnology IV, 7408, pp. 74080O. , Osterloh, F. E. International Society for Optics and Photonics: Bellingham, WA
dc.descriptionSonawane, R.S., Kale, B.B., Dongare, M.K., (2004) Mater. Chem. Phys., 85, p. 52
dc.descriptionPiera, E., Tejedor-Tejedor, M.I., Zorn, M.E., Anderson, M.A., (2003) Appl. Catal., B, 46, p. 671
dc.descriptionColemenares, J.C., Aramendia, M.A., Marinas, A., Marinas, A., Urbano, F., (2006) J. Appl. Catal. A, 306, p. 120
dc.descriptionYang, M., Hume, C., Lee, S., Son, Y.H., Lee, J.K., (2010) J. Phys. Chem. C, 114, p. 15292
dc.descriptionYoung, K.F., Frederikse, H.P.R., (1973) J. Phys. Chem. Ref. Data, 2, p. 313
dc.descriptionWang, J.A., Limas-Ballesteros, R., Lopez, T., Moreno, A., Gomez, R., Novaro, O., Bokhimi, X., (2001) J. Phys. Chem. B, 105, p. 9692
dc.descriptionLitter, M.I., Navío, J.A., (1996) J. Phochem. Photobiol. A, 98, p. 171
dc.descriptionLi, X., Yue, P.L., Kutal, C., (2003) New J. Chem., 27, p. 1264
dc.descriptionHuo, L., Li, Q., Zhao, H., Yu, L., Gao, S., Zhao, J., (2005) Sens. Actuators B, 107, p. 915
dc.descriptionWang, X.H., Li, J.-G., Kamiyama, H., Katada, M., Ohashi, N., Moriyoshi, Y., Ishigaki, T., (2005) J. Am. Chem. Soc., 127, p. 10982
dc.descriptionLarson, A.C., Von Dreele, R.B., (1994) LANL Report LAUR 86-748: General Structure Analysis System (GSAS), , Los Alamos National Laboratory: Los Alamos, NM
dc.descriptionToby, B.H., (2001) J. Appl. Crystallogr., 34, p. 210
dc.descriptionBokimi, X., Morales, A., Novaro, O., Lopéz, T., Gomez, R., (1995) J. Mater. Res., 10, p. 2788
dc.descriptionYoung, R.A., (1993) The Rietveld Method, , Oxford University Press: New York
dc.descriptionAzimov, P.Y., Bushmin, S.A., (2007) Geochem. Int., 45, p. 1210
dc.descriptionShannon, R.D., (1976) Acta Crystallogr., 32, p. 751
dc.descriptionColon, G., Hidalgo, M.C., Munuera, G., Ferino, I., Cutrufello, M.G., Navio, J.A., (2006) Appl. Catal., B, 63, p. 45
dc.descriptionAmbrus, Z., Balázs, N., Alapi, T., Wittmann, G., Sipos, P., Dombi, A., Mogyorósi, K., (2008) Appl. Catal., B, 81, p. 27
dc.descriptionFarges, F., Bronw, G.E., Rehr, J., (1997) J. Phys. Rev. B, 56, p. 1809
dc.descriptionAngelomé, P.A., Andrini, L., Calvo, M.E., Requejo, F.G., Bilmes, S.A., Soler-Illia, G.J.A.A., (2007) J. Phys. Chem. C, 111, p. 10886
dc.descriptionVasiliu, F., Diamandescu, L., MacOvei, D., Teodorescu, C.M., Nicula, R., (2009) J. Mater. Sci: Mater. Electron, 20, p. 211
dc.descriptionDjerdj, I., Tonejc, A.M., (2006) J. Alloys Compd., 413, p. 159
dc.descriptionDiamandescu, L., Vasiliu, F., Tarabasanu-Mihaila, D., Feder, M., Vlaicu, A.M., Teodorescu, C.M., MacOvei, D., Vasile, E., (2008) Mater. Chem. Phys., 112, p. 146
dc.descriptionCarp, O., Huisman, C.L., Reller, A., (2004) Prog. Solid State Chem., 32, p. 33
dc.languageen
dc.publisher
dc.relationACS Applied Materials and Interfaces
dc.rightsfechado
dc.sourceScopus
dc.titleIron Insertion And Hematite Segregation On Fe-doped Tio 2 Nanoparticles Obtained From Sol-gel And Hydrothermal Methods
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución