dc.creatorManzoli A.
dc.creatorDe Almeida G.F.B.
dc.creatorFilho J.A.
dc.creatorMattoso L.H.C.
dc.creatorRiul A.
dc.creatorMendonca C.R.
dc.creatorCorrea D.S.
dc.date2015
dc.date2015-06-25T12:55:43Z
dc.date2015-11-26T15:20:27Z
dc.date2015-06-25T12:55:43Z
dc.date2015-11-26T15:20:27Z
dc.date.accessioned2018-03-28T22:29:57Z
dc.date.available2018-03-28T22:29:57Z
dc.identifier
dc.identifierOptics And Laser Technology. Elsevier Ltd, v. 69, n. , p. 148 - 153, 2015.
dc.identifier303992
dc.identifier10.1016/j.optlastec.2014.12.026
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84921415955&partnerID=40&md5=5c6a56afbc9f9fcda241b26b1791a092
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85639
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85639
dc.identifier2-s2.0-84921415955
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1259987
dc.descriptionElectronic tongue (e-tongue) sensors based on impedance spectroscopy have emerged as a potential technology to evaluate the quality and chemical composition of food, beverages, and pharmaceuticals. E-tongues usually employ transducers based on metal interdigitated electrodes (IDEs) coated with a thin layer of an active material, which is capable of interacting chemically with several types of analytes. IDEs are usually produced by photolithographic methods, which are time-consuming and costly, therefore, new fabrication technologies are required to make it more affordable. Here, we employed femtosecond laser ablation with pulse duration of 50 fs to microfabricate gold IDEs having finger width from 2.3 μm up to 3.2 μm. The parameters used in the laser ablation technique, such as light intensity, scan speed and beam spot size have been optimized to achieve uniform IDEs, which were characterized by optical and scanning electron microscopy. The electrical properties of gold IDEs fabricated by laser ablation were evaluated by impedance spectroscopy, and compared to those produced by conventional photolithography. The results show that femtosecond laser ablation is a promising alternative to conventional photolithography for fabricating metal IDEs for e-tongue systems.
dc.description69
dc.description
dc.description148
dc.description153
dc.descriptionBaldwin, E.A., Bai, J.H., Plotto, A., Dea, S., Electronic noses and tongues: Applications for the food and pharmaceutical industries (2011) Sensors, 11, pp. 4744-4766
dc.descriptionSliwinska, M., Wisniewska, P., Dymerski, T., Namiesnik, J., Wardencki, W., Food analysis using artificial senses (2014) J Agric Food Chem, 62, pp. 1423-1448
dc.descriptionRiul, A., Malmegrim, R.R., Fonseca, F.J., Mattoso, L.H.C., Nano-assembled films for taste sensor application (2003) Artif Organs, 27, pp. 469-472
dc.descriptionToko, K., Electronic sensing of tastes (1998) Electroanalysis, 10, pp. 657-669
dc.descriptionChoi, D.H., Kim, N.A., Nam, T.S., Lee, S., Jeong, S.H., Evaluation of taste-masking effects of pharmaceutical sweeteners with an electronic tongue system (2014) Drug Dev Ind Pharm, 40, pp. 308-317
dc.descriptionRiul, A., De Sousa, H.C., Malmegrim, R.R., Dos Santos, D.S., Carvalho, A., Fonseca, F.J., Wine classification by taste sensors made from ultra-thin films and using neural networks (2004) Sens Actuators B - Chem, 98, pp. 77-82
dc.descriptionLegin, A., Rudnitskaya, A., Vlasov, Y., Di Natale, C., Davide, F., D'Amico, A., Tasting of beverages using an electronic tongue (1997) Sens Actuators B - Chem, 44, pp. 291-296
dc.descriptionBanerjee, R., Chattopadhyay, P., Tudu, B., Bhattacharyya, N., Bandyopadhyay, R., Artificial flavor perception of black tea using fusion of electronic nose and tongue response: A Bayesian statistical approach (2014) J Food Eng, 142, pp. 87-93
dc.descriptionBueno, L., Paixao, T.R.L.C., A copper interdigitated electrode and chemometrical tools used for the discrimination of the adulteration of ethanol fuel with water (2011) Talanta, 87, pp. 210-215
dc.descriptionKirsanov, D., Legin, E., Zagrebin, A., Ignatieva, N., Rybakin, V., Legin, A., Mimicking Daphnia magna bioassay performance by an electronic tongue for urban water quality control (2014) Anal Chim Acta, 824, pp. 64-70
dc.descriptionOliveira, J.E., Scagion, V.P., Grassi, V., Correa, D.S., Mattoso, L.H.C., Modification of electrospun nylon nanofibers using layer-by-layer films for application in flow injection electronic tongue: Detection of paraoxon pesticide in corn crop (2012) Sens Actuators B - Chem, 171, pp. 249-255
dc.descriptionToko, K., Matsuno, T., Yamafuji, K., Hayashi, K., Ikezaki, H., Sato, K., Multichannel taste sensor using electric-potential changes in lipid-membranes (1994) Biosens Bioelectron, 9, pp. 359-364
dc.descriptionRiul, A., Dos Santos, D.S., Wohnrath, K., Di Tommazo, R., Carvalho, A., Fonseca, F.J., Artificial taste sensor: Efficient combination of sensors made from Langmuir-Blodgett films of conducting polymers and a ruthenium complex and self-assembled films of an azobenzene-containing polymer (2002) Langmuir, 18, pp. 239-245
dc.descriptionWiziack, N.K.L., Catini, A., Santonico, M., D'Amico, A., Paolesse, R., Paterno, L.G., A sensor array based on mass and capacitance transducers for the detection of adulterated gasolines (2009) Sens Actuators B - Chem, 140, pp. 508-513
dc.descriptionZucolotto, V., Daghastanli, K.R.P., Hayasaka, C.O., Riul, Jr.A., Ciancaglini, P., Oliveira, Jr.O.N., Using capacitance measurements as the detection method in antigen-containing layer-by-layer films for biosensing (2007) Anal Chem, 79, pp. 2163-2167
dc.descriptionRiul, Jr.A., Dantas, C.A.R., Miyazaki, C.M., Oliveira, Jr.O.N., Recent advances in electronic tongues (2010) Analyst, 135, pp. 2481-2495
dc.descriptionManzoli, A., Shimizu, F.M., Mercante, L.A., Paris, E.C., Oliveira, O.N., Correa, D.S., Layer-by-layer fabrication of AgCl-PANI hybrid nanocomposite films for electronic tongues (2014) Phys Chem Chem Phys, 16, pp. 24275-24281
dc.descriptionRiul, Jr.A., De Sousa, H.C., Malmegrim, R.R., Dos Santos, Jr.D.S., Carvalho, A.C.P.L.F., Fonseca, F.J., Wine classification by taste sensors made from ultra-thin films and using neural networks (2004) Sens Actuators B: Chem, 98, pp. 77-82
dc.descriptionCorrea, D.S., Medeiros, E.S., Oliveira, J.E., Paterno, L.G., Mattoso, L.H.C., Nanostructured conjugated polymers in chemical sensors: Synthesis, properties and applications (2014) J Nanosci Nanotechnol, 14, pp. 6509-6527
dc.descriptionMartin, J.I., Nogues, J., Liu, K., Vicent, J.L., Schuller, I.K., Ordered magnetic nanostructures: Fabrication and properties (2003) J Magn Magn Mater, 256, pp. 449-501
dc.descriptionMijatovic, D., Eijkel, J.C.T., Van Den Berg, A., Technologies for nanofluidic systems: Top-down vs. Bottom-up - A review (2005) Lab Chip, 5, pp. 492-500
dc.descriptionFlorian, C., Caballero-Lucas, F., Fernandez-Pradas, J.M., Morenza, J.L., Serra, P., Surface ablation of transparent polymers with femto second laser pulses (2014) Appl Surf Sci, 302, pp. 226-230
dc.descriptionMendonca, C.R., Correa, D.S., Marlow, F., Voss, T., Tayalia, P., Mazur, E., Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer (2009) Appl Phys Lett, 95
dc.descriptionTender, L.M., Worley, R.L., Fan, H.Y., Lopez, G.P., Electrochemical patterning of self-assembled monolayers onto microscopic arrays of gold electrodes fabricated by laser ablation (1996) Langmuir, 12, pp. 5515-5518
dc.descriptionSugioka, K., Xu, J., Wu, D., Hanada, Y., Wang, Z., Cheng, Y., Femtosecond laser 3D micromachining: A powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass (2014) Lab Chip, 14, pp. 3447-3458
dc.descriptionLasagni, A., Roch, T., Bieda, M., Benke, D., Beyer, E., High speed surface functionalization using direct laser interference patterning (2014) Towards 1 m2/min Fabrication Speed with Sub-μm Resolution Proc. SPIE 8968, , http://dx.doi.org/10.1117/12.2041215, Laser-based Micro- and Nanoprocessing VIII, 89680A (March 6,)
dc.descriptionDing, Y., Shao, J., Li, X., Tian, H., Miao, L., Liu, H., Controllable formation of nanogaps in thin metallic film by rear side irradiation with ultrashort pulsed laser (2011) Phys E: Low-dimens Syst Nanostruct, 44, pp. 430-434
dc.descriptionKim, J., Na, S., Metal thin film ablation with femtosecond pulsed laser (2007) Opt Laser Technol, 39, pp. 1443-1448
dc.descriptionDöring, S., Richter, S., Tünnermann, A., Nolte, S., Influence of pulse duration on the hole formation during short and ultrashort pulse laser deep drilling (2012) Proc. SPIE 8247, Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XII, 824717, , http://dx.doi.org/10.1117/12.913755, (February 9)
dc.descriptionCampana, A., Cramer, T., Greco, P., Foschi, G., Murgia, M., Biscarini, F., Facile maskless fabrication of organic field effect transistors on biodegradable substrates (2013) Appl Phys Lett, 103
dc.descriptionCorrea, D.S., Cardoso, M.R., Tribuzi, V., Misoguti, L., Mendonca, C.R., Femtosecond laser in polymeric materials: Microfabrication of doped structures and micromachining (2012) IEEE J Sel Top Quantum Electron, 18, pp. 176-186
dc.descriptionEiselen, S., Riedel, S., Schmidt, M., On the applicability of arbitrarily shaped nanosecond laser pulses for high quality high efficiency micromachining (2014) Laser Sources Appl II, 9135
dc.descriptionDanilov, P.A., Zayarnyi, D.A., Ionin, A.A., Kudryashov, S.I., Makarov, S.V., Rudenko, A.A., Mechanisms of formation of sub- and micrometre-scale holes in thin metal films by single nano- and femtosecond laser pulses (2014) Quantum Electron, 44, p. 540
dc.descriptionNolte, S., Momma, C., Jacobs, H., Tunnermann, A., Chichkov, B.N., Wellegehausen, B., Ablation of metals by ultrashort laser pulses (1997) J Opt Soc Am B - Opt Phys, 14, pp. 2716-2722
dc.descriptionPech, D., Brunet, M., Durou, H., Huang, P., Mochalin, V., Gogotsi, Y., Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon (2010) Nat Nanotechnol, 5, pp. 651-654
dc.descriptionShen, C., Wang, X., Zhang, W., Kang, F., A high-performance three-dimensional micro supercapacitor based on self-supporting composite materials (2011) J Power Sources, 196, pp. 10465-10471
dc.descriptionPech, D., Brunet, M., Dinh, T.M., Armstrong, K., Gaudet, J., Guay, D., Influence of the configuration in planar interdigitated electrochemical micro-capacitors (2013) J Power Sources, 230, pp. 230-235
dc.languageen
dc.publisherElsevier Ltd
dc.relationOptics and Laser Technology
dc.rightsfechado
dc.sourceScopus
dc.titleFemtosecond Laser Ablation Of Gold Interdigitated Electrodes For Electronic Tongues
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución