Artículos de revistas
Structure And Regulation Of The Bifunctional Enzyme Lysine-oxoglutarate Reductase-saccharopine Dehydrogenase In Maize
Registro en:
European Journal Of Biochemistry. , v. 253, n. 3, p. 720 - 729, 1998.
142956
2-s2.0-0032079778
Autor
Kemper E.L.
Cord-Neto G.
Capella A.N.
Goncalves-Butruile M.
Azevedo R.A.
Arruda P.
Institución
Resumen
The lysine-oxoglutarate reductase (LOR) domain of the bifunctional enzyme lysine-oxoglutarate reductase-saccharopine dehydrogenase (LOR/SDH) from maize endosperm was shown to be activated by Ca 2+, high salt concentration, organic solvents and Mg 2+. The Ca 2+-dependent enhancement of LOR activity was inhibited by the calmodulin antagonists N-(6-aminohexyl)- 5-chloro-1-naphthalenesulfonamide (w7) and calmidazolium. Limited proteolysis was used to assess the structure/function relationship of the enzyme. Digestion with elastase separated the bifunctional 125-kDa polypeptide into two polypeptides of 65 kDa and 57 kDa, containing the functional domains of LOR and SDH, respectively. Proteolysis did not affect SDH activity, while LOR showed a time-dependent and protease-concentration-dependent inactivation followed by reactivation. Prolonged digestion or increasing amounts of elastase produced a complex pattern of limit polypeptides derived from additional cleavage sites within the 65-kDa (LOR) and 57-kDa (SDH) domains. The SDH-containing polypeptides inhibited the enzymatic activity of LOR- containing polypeptides. When separated from the SDH domain by limited proteolysis and ion-exchange chromatography, the LOR domain retained its Ca 2+ activation property, but was no longer activated by high salt concentrations. These results suggest that the LOR activity of the native enzyme is normally inhibited such that after modulation, the enzyme undergoes a conformational alteration to expose the catalytic domain for substrate binding. 253 3 720 729 Markovitz, P.J., Chuang, D.T., The bifunctional aminoadipic semialdehyde synthase in lysine degradation (1987) J. Biol. Chem., 262, pp. 9353-9358 Gonçalves-Butruille, M., Szajner, P., Torigoi, E., Leite, A., Arruda, P., Purification and characterization of the bifunctional enzyme lysine-oxoglutarate reductase/saccharopine dehydrogenase from maize (1996) Plant Physiol. (Rockv.), 110, pp. 765-771 Jones, E.E., Broquist, H.P., Saccharopine, an intermediate of the aminoadipic acid pathway of lysine biosynthesis II: Studies in Saccharomyces cerevisiae (1965) J. Biol. Chem., 240, pp. 2531-2536 Jones, E.E., Broquist, H.P., Saccharopine, an intermediate of the aminoadipic acid pathway of lysine biosynthesis III: Aminoadipic semialdehyde-glutamate reductase (1966) J. Biol. Chem., 241, pp. 3440-3444 Saunders, P.P., Broquist, H.P., Saccharopine, an intermediate of the aminoadipic acid pathway of lysine biosynthesis IV: Saccharopine dehydrogenase (1966) J. Biol. Chem., 241, pp. 3435-3440 Fjellstedt, T.A., Robinson, J.C., Purification and properties of L-lysine-α-ketoglutarate reductase from human placenta (1975) Arch. Biochem. Biophys., 168, pp. 536-548 Arruda, P., Sodek, L., Silva, W.J., Lysine-ketoglutarate reductase activity in developing maize endosperm (1982) Plant Physiol. (Rockv.), 69, pp. 988-989 Fjellstedt, T.A., Robinson, J.C., Properties of partially purified saccharopine dehydrogenase from human placenta (1975) Arch. Biochem. Biophys., 171, pp. 191-196 Ramos, F., Dubois, E., Piérard, A., Control of enzyme synthesis in the lysine biosynthetic pathway of Saccharomyces cerevisiae: Evidence for a regulatory route of gene LYS 14 (1988) Eur. J. Biochem., 171, pp. 171-176 Borell, C.W., Urrestarazu, L.A., Bhattacharjee, J.K., Two unlinked lysine genes (LYS9 and LYS14) are required for the synthesis of saccharopine reductase in Saccharomyces cerevisiae (1984) J. Bacteriol., 159, pp. 429-432 Feller, A., Dubois, E., Ramos, F., Piérard, A., Repression of the genes for lysine biosynthesis in Saccharomyces cerevisiae is caused by limitation of LYS 14-dependent transcriptional activation (1994) Mol. Cell. Biol., 14, pp. 6411-6418 Foster, A.R., Scislowski, P.W.D., Harris, C.I., Fuller, M.F., Metabolic response of liver lysine α-ketoglutarate reductase activity in rats fed lysine limiting or lysine excessive diets (1993) Nutr. Res., 13, pp. 1433-1443 Karchi, H., Orit, S., Galili, G., Lysine synthesis and catabolism are coordenately regulated during tobacco seed development (1994) Proc. Natl Acad. Sci. USA, 91, pp. 2577-2581 Scislowski, P.W.D., Foster, A.R., Fuller, M.F., Regulation of oxidative degradation of L-lysine in rat liver mitochondria (1994) Biochem. J., 99, pp. 887-891 Karchi, H., Daphna, M., Yaacov, S., Galili, G., The lysine-dependent stimulation of lysine catabolism in tobacco seeds requires calcium and protein phosphorilation (1995) Plant Cell, 7, pp. 1963-1970 Brochetto-Braga, M.R., Leite, A., Arruda, P., Partial purification and characterization of lysine-oxoglutarate reductase activity in normal and opaque-2 maize endosperms (1992) Plant Physiol. (Rockv.), 98, pp. 1139-1147 Lohmer, S., Maddaloni, M., Motto, M., Di Fonzo, N., Hartings, H., Salamini, F., Thompson, R.D., The maize regulatory locus Opaque 2 encodes a DNA-binding protein which activates the transcription of the b-32 gene (1991) EMBO J., 10, pp. 617-624 Schmidt, R.J., Ketudat, M., Aukerman, M.J., Hoschek, G., Opaque2 is a transcriptional activator that recognizes a specific target site in 22 kDa zein genes (1992) Plant Cell, 4, pp. 689-700 Cord Neto, G., Yunes, J.A., Vettore, A.L., Da Silva, M.J., Arruda, P., Leite, A., The involvement of Opaque-2 on β-prolamin gene regulation in maize and Coix suggests a more general role for this transcriptional activator (1995) Plant Mol. Biol., 27, pp. 1015-1029 Mauri, I., Maddaloni, M., Lohmer, S., Motto, M., Salamini, F., Thompson, R.D., Martegani, E., Functional expression of the transcriptional activator Opaque-2 of Zea mays in transformed yeast (1993) Mol. Gen. Genet., 241, pp. 319-326 Hinnebush, A.G., Mechanisms of regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae (1988) Microbiol. Rev., 52, pp. 248-273 Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 277, pp. 680-685 Timmons, T.M., Dunbar, B.S., Protein blotting and immunodetection (1990) Methods Enzymol., 182, pp. 679-688 Gallagher, S., Immunoblot detection (1996) Current Protocols in Protein Science, pp. 10101-101012. , Coligan, J. E., Dunn, B. M., Ploegh, H. L., Speicher, D. W. & Wingfield, P. T. eds John Wiley & Sons, New York Bradford, M.M., A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254 Tang, G., Miron, D., Zhu-Shimoni, J.X., Galili, G., Regulation of lysine catabolism through lysine-oxoglutarate reductase and saccharopine dehydrogenase in Arabidopsis (1997) Plant Cell, 9, pp. 1305-1316 Shearwin, K., Nanhua, C., Masters, C., Interactions between glycolytic enzymes and cytoskeletal structure. The influence of ionic strength and molecular crowding (1990) Biochem. Internat., 21, pp. 53-60 Roberts, D.M., Harmon, A.C., Calcium-modulated proteins: Targets of intracellular calcium signals in higher plants (1992) Annu. Rev. Plant Physiol. Plant Mol. Biol., 43, pp. 375-414 Wu, D., Ahmed, S.N., Lian, W., Hersh, L.B., Activation of rat choline acetyltransferase by limited proteolysis (1995) J. Biol. Chem., 270, pp. 19395-19401 Kaufmann, M., Schwarz, T., Jaenicke, R., Schnackerz, K.D., Neyer, H.E., Bartholmes, P., Limited proteolysis of the beta 2-dimer of tryptophan synthase yields an enzymatically active derivative that binds alpha-subunits (1991) Biochemistry, 30, pp. 4173-4179 Hilton, S., McCubbin, W.D., Kay, C.M., Buckley, T., Purification and spectral study of a microbial fatty acyltransferase: Activation by limited proteolysis (1990) Biochemistry, 29, pp. 9072-9078 Snedden, W.A., Arazi, T., Fromm, H., Shelp, B.J., Calcium/calmodulin activation of soybean glutamate decarboxylase (1995) Plant Physiol. (Rockv.), 108, pp. 543-549 Carafoli, E., Calcium pump of the plasma membrane (1991) Physiol. Rev., 71, pp. 129-153 Arazi, T., Baum, G., Snedden, W.A., Shelp, B.J., Fromm, H., Molecular and biochemical analysis of calmodulin interactions with the calmodulin-binding domain of plant glutamate decarboxylase (1995) Plant Physiol. (Rockv.), 108, pp. 551-561 Baum, G., Chen, Y., Arazi, T., Takatsuji, H., Fromm, H., A plant glutamate-decarboxylase containing a calmodulin binding domain - Cloning, sequence, and functional-analysis (1993) J. Biol. Chem., 268, pp. 19610-19617 Baum, G., Lev-Yadun, S., Fridmann, Y., Arazi, T., Katsnelson, H., Zik, M., Fromm, H., Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants (1996) EMBO J., 15, pp. 2988-2996 Miron, D., Ben-Yaacov, S., Karchi, H., Galili, G., In vitro dephosphorylation inhibits the activity of soybean lysine-oxoglutarate reductase in a lysine-regulated manner (1997) Plant J., 12, pp. 1453-1458