dc.creatorFigueira T.R.E.S.
dc.creatorOkura V.
dc.creatorRodrigues Da Silva F.
dc.creatorJose Da Silva M.
dc.creatorKudrna D.
dc.creatorAmmiraju J.S.S.
dc.creatorTalag J.
dc.creatorWing R.
dc.creatorArruda P.
dc.date2012
dc.date2015-06-25T20:24:22Z
dc.date2015-11-26T15:19:47Z
dc.date2015-06-25T20:24:22Z
dc.date2015-11-26T15:19:47Z
dc.date.accessioned2018-03-28T22:29:17Z
dc.date.available2018-03-28T22:29:17Z
dc.identifier
dc.identifierBmc Research Notes. , v. 5, n. , p. - , 2012.
dc.identifier17560500
dc.identifier10.1186/1756-0500-5-185
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84865238999&partnerID=40&md5=a30f47d70e1edc833974061b9160dc61
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/90210
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/90210
dc.identifier2-s2.0-84865238999
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1259825
dc.descriptionBackground: Sugarcane breeding has significantly progressed in the last 30 years, but achieving additional yield gains has been difficult because of the constraints imposed by the complex ploidy of this crop. Sugarcane cultivars are interspecific hybrids between Saccharum officinarum and Saccharum spontaneum. S. officinarum is an octoploid with 2n=80 chromosomes while S. spontaneum has 2n=40 to 128 chromosomes and ploidy varying from 5 to 16. The hybrid genome is composed of 70-80%S. officinaram and 5-20%S. spontaneum chromosomes and a small proportion of recombinants. Sequencing the genome of this complex crop may help identify useful genes, either per se or through comparative genomics using closely related grasses. The construction and sequencing of a bacterial artificial chromosome (BAC) library of an elite commercial variety of sugarcane could help assembly the sugarcane genome. Results: A BAC library designated SS-SBa was constructed with DNA isolated from the commercial sugarcane variety SP80-3280. The library contains 36,864 clones with an average insert size of 125 Kb, 88% of which has inserts larger than 90 Kb. Based on the estimated genome size of 760-930 Mb, the library exhibits 5-6 times coverage the monoploid sugarcane genome. Bidirectional BAC end sequencing (BESs) from a random sample of 192 BAC clones sampled genes and repetitive elements of the sugarcane genome. Forty-five per cent of the total BES nucleotides represents repetitive elements, 83% of which belonging to LTR retrotransposons. Alignment of BESs corresponding to 42 BACs to the genome sequence of the 10 sorghum chromosomes revealed regions of microsynteny, with expansions and contractions of sorghum genome regions relative to the sugarcane BAC clones. In general, the sampled sorghum genome regions presented an average 29% expansion in relation to the sugarcane syntenic BACs. Conclusion: The SS-SBa BAC library represents a new resource for sugarcane genome sequencing. An analysis of insert size, genome coverage and orthologous alignment with the sorghum genome revealed that the library presents whole genome coverage. The comparison of syntenic regions of the sorghum genome to 42 SS-SBa BES pairs revealed that the sorghum genome is expanded in relation to the sugarcane genome. © 2012 Figueira et al; licensee BioMed Central Ltd.
dc.description5
dc.description
dc.description
dc.description
dc.descriptionGoldemberg, J., Coelho, S.T., Guardabassi, P., The sustainability of ethanol production from sugarcane (2008) Energy Policy, 36, pp. 2086-2097. , 10.1016/j.enpol.2008.02.028
dc.descriptionMatsuoka, S., Ferro, J., Arruda, P., The Brazilian experience of sugarcane ethanol industry (2009) Vitro Cell Dev Biol Plant, 45, pp. 372-381. , 10.1007/s11627-009-9220-z
dc.descriptionArruda, P., Perspective of the Sugarcane Industry in Brazil (2011) Tropical Plant Biol, 4, pp. 3-8. , 10.1007/s12042-011-9074-5
dc.descriptionArcenaux, G., Cultivated sugarcanes of the world and their botanical derivation (1967) Proc Int Soc Sugarcane Technol, 12, pp. 844-885
dc.descriptionBerding, N., Roach, B.T., Germplasm collection, maintenance, and use (1987) Sugarcane Improvement Through Breeding, pp. 143-210. , New York, Elsevier Heinz DJ
dc.descriptionRoach, B.T., Nobilisation of sugarcane (1972) Proc Int Soc Sugar Cane Technol, 14, pp. 206-216
dc.descriptionDhont, A., Glaszmann, J.C., Sugarcane genome analysis with molecular markers, a first decade of research (2001) Proceedings of the International Society of Sugarcane Technology, 24, pp. 556-559
dc.descriptionLu, Y.H., D'Hont, A., Paulet, F., Grivet, L., Arnaud, M., Glaszmann, J.C., Molecular diversity and genome structure in modern sugarcane varieties (1994) Euphytica, 78, pp. 217-226. , 10.1007/BF00027520
dc.descriptionD'Hont, A., Ison, D., Alix, K., Roux, C., Glaszmann, J.C., Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes (1998) Genome, 41 (2), pp. 221-225
dc.descriptionHa, S., Moore, P.H., Heinz, D., Kato, S., Ohmido, N., Fukui, K., Quantitative chromosome map of the polyploid Saccharum spontaneum by multicolor fluorescence in situ hybridization and imaging methods (1999) Plant Molecular Biology, 39 (6), pp. 1165-1173. , DOI 10.1023/A:1006133804170
dc.descriptionGrivet, L., Arruda, P., Sugarcane genomics: Depicting the complex genome of an important tropical crop (2002) Current Opinion in Plant Biology, 5 (2), pp. 122-127. , DOI 10.1016/S1369-5266(02)00234-0
dc.descriptionDhont, A., Grivet, L., Feldmann, P., Rao, S., Berding, N., Glaszmann, J.C., Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics (1996) Mol Gen Genet, 250, pp. 405-413. , 8602157
dc.descriptionAbrouk, M., Murat, F., Pont, C., Messing, J., Jackson, S., Faraut, T., Tannier, E., Salse, J., Palaeogenomics of plants: Synteny-based modelling of extinct ancestors (2010) Trends Plant Sci, 15, pp. 479-487. , 10.1016/j.tplants.2010.06.001 20638891
dc.descriptionPaterson, A.H., Bowers, J.E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., Haberer, G., Carpita, N.C., The sorghum bicolor genome and the diversification of grasses (2009) Nature, 457, pp. 551-556. , 10.1038/nature07723 19189423
dc.descriptionGarsmeur, O., Charron, C., Bocs, S., Jouffe, V., Samain, S., Couloux, A., Droc, G., Dhont, A., High homologous gene conservation despite extreme autopolyploid redundancy in sugarcane (2011) New Phytol, 189, pp. 629-642. , 10.1111/j.1469-8137.2010.03497.x 21039564
dc.descriptionJannoo, N., Grivet, L., Chantret, N., Garsmeur, O., Glaszmann, J.C., Arruda, P., D'Hont, A., Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome (2007) Plant Journal, 50 (4), pp. 574-585. , DOI 10.1111/j.1365-313X.2007.03082.x
dc.descriptionWang, J., Roe, B., MacMil, S., Yu, Q., Murray, J.E., Tang, H., Chen, C., Ming, R., Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes (2010) BMC Genomics, 11, p. 261. , 10.1186/1471-2164-11-261 20416060
dc.descriptionVettore, A.L., Da Silva, F.R., Kemper, E.L., Arruda, P., The libraries that made SUCEST (2001) Genet Mol Biol, 24, pp. 1-4. , 10.1590/S1415-47572001000100002
dc.descriptionVettore, A.L., Da Silva, F.R., Kemper, E.L., Souza, G.M., Da Silva, A.M., Ferro, M.I.T., Henrique-Silva, F., Arruda, P., Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane (2003) Genome Research, 13 (12), pp. 2725-2735. , DOI 10.1101/gr.1532103
dc.descriptionLuo, M., Wing, R.A., An improved method for plant BAC library construction (2003) Plant Functional Genomics: Methods and Protocols, p. 3. , Humana Press, Totowa, NJ, USA Grotewold E - 19
dc.descriptionCalsa Junior, T., Carraro, D.M., Benatti, M.R., Barbosa, A.C., Kitajima, J.P., Carrer, H., Structural features and transcript-editing analysis of sugarcane (Saccharum officinarum L.) chloroplast genome (2004) Current Genetics, 46 (6), pp. 366-373. , DOI 10.1007/s00294-004-0542-4
dc.descriptionNotsu, Y., Masood, S., Nishikawa, T., Kubo, N., Akiduki, G., Nakazono, M., Hirai, A., Kadowaki, K., The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: Frequent DNA sequence acquisition and loss during the evolution of flowering plants (2002) Molecular Genetics and Genomics, 268 (4), pp. 434-445. , DOI 10.1007/s00438-002-0767-1
dc.descriptionTomkins, J.P., Yu, Y., Miller-Smith, H., Frisch, D.A., Woo, S.S., Wing, R.A., A bacterial artificial chromosome library for sugarcane (1999) Theoretical and Applied Genetics, 99 (3-4), pp. 419-424. , DOI 10.1007/s001220051252
dc.descriptionLe Cunff, L., Garsmeur, O., Raboin, L.M., Pauquet, J., Telismart, H., Selvi, A., Grivet, L., Dhont, A., Diploid polyploid syntenic shuttle mapping and haplotype-specific chromosome walking toward a rust resistance gene (Bru1) in highly polyploid sugarcane (2n-12x - 115) (2008) Genetics, 180, pp. 649-660. , 10.1534/genetics.108.091355 18757946
dc.descriptionBowers, J.E., Arias, M.A., Asher, R., Avise, J.A., Ball, R.T., Brewer, G.A., Buss, R.W., Paterson, A.H., Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses (2005) Proceedings of the National Academy of Sciences of the United States of America, 102 (37), pp. 13206-13211. , DOI 10.1073/pnas.0502365102
dc.descriptionMing, R., Liua, S.C., Lina, Y.R., Da Silva, J., Wilson, W., Braga, D., Van Deynze, A., Paterson, A.H., Detailed alignment of saccharum and sorghum chromosomes: Comparative organization of closely related diploid and polyploid genomes (1998) Genetics, 150, pp. 1663-2168. , 9832541
dc.descriptionLin, J., Kudrna, D., Wing, R.A., Construction, characterization, and preliminary BAC-end sequence analysis of a bacterial artificial chromosome library of the tea plant (Camellia sinensis) (2011) J Biomed Biotechnol, , 10.1155/ 2011/476723
dc.descriptionPeterson, D.G., Tomkins, J.P., Frisch, D.A., Wing, R.A., PatersonAH: Construction of plant bacterial artificial chromosome (BAC) libraries: An illustrated guide (2000) Journal of Agricultural Genomics, 5, pp. 1-100
dc.descriptionTelles, G.P., Da Silva, F.R., Trimming and clustering sugarcane ESTs (2001) Genetics and Molecular Biology, 24 (1-4), pp. 17-23
dc.descriptionTarailo-Graovac, M., Chen, N., Using RepeatMasker to identify repetitive elements in genomic sequences (2009) Curr Protoc Bioinformatics, 4, pp. 4-10
dc.descriptionJurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohany, O., Walichiewicz, J., Repbase Update, a database of eukaryotic repetitive elements (2005) Cytogenetic and Genome Research, 110 (1-4), pp. 462-467. , DOI 10.1159/000084979
dc.descriptionKohany, O., Gentles, A.J., Hankus, L., Jurka, J., Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor (2006) BMC Bioinformatics, 7, p. 474. , http://www.biomedcentral.com/1471-2105/7/474, DOI 10.1186/1471-2105-7-474
dc.descriptionKim, H.R., Hurwitz, B., Yu, Y., Collura, K., Gill, N., SanMiguel, P., Mullikin, J.C., Wing, R.A., Construction, alignment and analysis of twelve framework physical maps that represent the ten genome types of the genus Oryza (2008) Genome Biology, 9 (2), pp. R45. , DOI 10.1186/gb-2008-9-2-r45
dc.descriptionAmmiraju, J.S.S., Luo, M., Goicoechea, J.L., Wang, W., Kudrna, D., Mueller, C., Talag, J., Wing, R.A., The Oryza bacterial artificial chromosome library resource: Construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza (2006) Genome Research, 16 (1), pp. 140-147. , http://www.genome.org/cgi/reprint/16/1/140, DOI 10.1101/gr.3766306
dc.languageen
dc.publisher
dc.relationBMC Research Notes
dc.rightsfechado
dc.sourceScopus
dc.titleA Bac Library Of The Sp80-3280 Sugarcane Variety (saccharum Sp.) And Its Inferred Microsynteny With The Sorghum Genome
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución