dc.creatorManenti F.
dc.creatorCieri S.
dc.creatorRestelli M.
dc.creatorNascimento Lima N.M.
dc.creatorZuniga Linan L.
dc.creatorBozzano G.
dc.date2012
dc.date2015-06-25T20:23:46Z
dc.date2015-11-26T15:19:09Z
dc.date2015-06-25T20:23:46Z
dc.date2015-11-26T15:19:09Z
dc.date.accessioned2018-03-28T22:28:42Z
dc.date.available2018-03-28T22:28:42Z
dc.identifier
dc.identifierComputer Aided Chemical Engineering. , v. 30, n. , p. 867 - 871, 2012.
dc.identifier15707946
dc.identifier10.1016/B978-0-444-59520-1.50032-4
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84862872833&partnerID=40&md5=f4ca6e301a3c8c3b095739d423f1a429
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/90085
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/90085
dc.identifier2-s2.0-84862872833
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1259680
dc.descriptionThis work provides the theoretical formulation, implementation directives and validation case for the extension of the nonlinear model predictive control from the time domain to the spatio-temporal domain. Effectiveness and online feasibility are demonstrated for industrial processes of distributed nature. The case of methanol synthesis (control of hot-spot temperature and axial position) is selected. © 2012 Elsevier B.V.
dc.description30
dc.description
dc.description867
dc.description871
dc.descriptionBendersky, E., Christofides, P.D., Optimization of transport-reaction processes using nonlinear model reduction (2000) Chemical Engineering Science, 55, pp. 4349-4366
dc.descriptionBuzzi-Ferraris, G., Manenti, F., A Combination of Parallel Computing and Object-Oriented Programming to Improve Optimizer Robustness and Efficiency (2010) Computer Aided Chemical Engineering, 28, pp. 337-342
dc.descriptionChristofides, P.D., Daoutidis, P., Nonlinear control of diffusion-convection-reaction processes (1996) Computers & Chemical Engineering, 20, pp. S1071-S1076
dc.descriptionFlores-Tlacuahuac, A., Biegler, L.T., Saldivar-Guerra, E., Optimal grade transitions in the high-impact polystyrene polymerization process (2006) Ind. Eng. Chem. Res., 45, pp. 6175-6189
dc.descriptionLiu, J., de la Pena, D.M., Christofides, P.D., Distributed Model Predictive Control of Nonlinear Process Systems (2009) Aiche Journal, 55, pp. 1171-1184
dc.descriptionLou, Y.M., Hu, G.S., Christofides, P.D., Model predictive control of nonlinear stochastic partial differential equations with application to a sputtering process (2008) Aiche Journal, 54, pp. 2065-2081
dc.descriptionLurgi, G., (2009) Lurgi MegaMethanol®, , http://www.lurgi.com
dc.descriptionManenti, F., Considerations on Nonlinear Model Predictive Control Techniques (2011) Computers & Chemical Engineering, 35, pp. 2491-2509
dc.descriptionManenti, F., Cieri, S., Restelli, M., Considerations on the steady-state modeling of methanol synthesis fixed-bed reactor (2011) Chemical Engineering Science, 66, pp. 152-162
dc.descriptionManenti, F., Cieri, S., Restelli, M., Lima, N.M.N., Zuniga Linan, L., Dynamic Simulation of Lurgi-type Reactor for Methanol Synthesis (2011) Chem. Eng. Trans., 24, pp. 379-384
dc.descriptionMorari, M., Lee, J.H., Model predictive control: past, present and future (1999) Computers & Chemical Engineering, 23, pp. 667-682
dc.descriptionNi, D., Christofides, P.D., Multivariable predictive control of thin film deposition using a stochastic PDE model (2005) Industrial & Engineering Chemistry Research, 44, pp. 2416-2427
dc.descriptionPalavajjhala, S., Motard, R.L., Joseph, B., Blocking and Condensing design for quadratic dynamic matrix control using wavelets (1994) Ind. Eng. Chem. Res., 33, pp. 1159-1173
dc.languageen
dc.publisher
dc.relationComputer Aided Chemical Engineering
dc.rightsfechado
dc.sourceScopus
dc.titleOnline Feasibility And Effectiveness Of A Spatio-temporal Nonlinear Model Predictive Control: The Case Of Methanol Synthesis Reactor
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución