dc.creatorGarcia O.
dc.creatorFerreira J.V.
dc.creatorNeto A.M.
dc.date2015
dc.date2015-06-25T12:55:33Z
dc.date2015-11-26T15:19:01Z
dc.date2015-06-25T12:55:33Z
dc.date2015-11-26T15:19:01Z
dc.date.accessioned2018-03-28T22:28:34Z
dc.date.available2018-03-28T22:28:34Z
dc.identifier9781479967117
dc.identifierProceedings - 2nd Sbr Brazilian Robotics Symposium, 11th Lars Latin American Robotics Symposium And 6th Robocontrol Workshop On Applied Robotics And Automation, Sbr Lars Robocontrol 2014 - Part Of The Joint Conference On Robotics And Intelligent Systems, Jcris 2014. Institute Of Electrical And Electronics Engineers Inc., v. , n. , p. 61 - 66, 2015.
dc.identifier
dc.identifier10.1109/SBR.LARS.Robocontrol.2014.23
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84923809956&partnerID=40&md5=481fc0b73921f69ee65fdd6261e3ff4e
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85613
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85613
dc.identifier2-s2.0-84923809956
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1259654
dc.descriptionThe design of the robotic vehicle VILMA at UNICAMP is developed in-vehicle platform Fiat Punto. In addition to a set of sensors, actuators, mechanism and components (hardware and/or software), new technologies should be developed in support of Automation, Control, Perception, Localization and Navigation. This work presents the design and simulation of path tracking control using model predictive control (MPC) which attempts to exploit the characteristics of the structured environment where the future path is previously known. The model for design the controller is based in a single tracking model of the vehicle and in a model of the steering which the state variables are observed by the Extended Kalman Filter (EKF). Finally, it is explained how the path is smoothed generating an arc between the points and making an optimization process by the gradient algorithm.
dc.description
dc.description
dc.description61
dc.description66
dc.descriptionAhn, C., Peng, H., Eric Tseng, H., Estimation of road friction for enhanced active safety systems: Dynamic approach (2009) American Control Conference 2009. ACC'09, pp. 1110-1115. , IEEE
dc.descriptionAvak, B., (2004) Modeling and Control of A Superimposed Steering System, , Master's thesis School of Electrical and Computer Engineering Georgia Institute of Technology
dc.descriptionChoset, H.M., (2005) Principles of Robot Motion: Theory, Algorithms, and Implementation, , Bradford Books
dc.descriptionDoumiati, M., Victorino, A., Charara, A., Lechner, D., A method to estimate the lateral tire force and the sideslip angle of a vehicle: Experimental validation (2010) American Control Conference (ACC), 2010, pp. 6936-6942. , IEEE
dc.descriptionGarca, O., Ferreira, J.V., De Neto Miranda, A., Dynamic model of a commercial vehicle for steering control and state estimation (2013) XI Simposio Brasileiro de Automação Inteligente (SBAI), , october
dc.descriptionGhandour, R., Victorino, A., Charara, A., Lechner, D., A vehicle skid indicator based on maximum friction estimation (2011) 18th International Federation of Automatic Control Conference (IFAC) World Congress, , Milano
dc.descriptionGlaser, S., Mammar, S., Sentouh, C., Integrated driver-vehicle-infrastructure road departure warning unit (2010) Vehicular Technology IEEE Transactions on, 59 (6), pp. 2757-2771
dc.descriptionHoward, T.M., Green, C.J., Kelly, A., Ferguson, D., State space sampling of feasible motions for high-performance mobile robot navigation in complex environments (2008) Journal of Field Robotics, 25 (6-7), pp. 325-345
dc.descriptionKamnik, R., Boettiger, F., Hunt, K., Roll dynamics and lateral load transfer estimation in articulated heavy freight vehicles (2003) Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 217 (11), pp. 985-997
dc.descriptionKelly, A., Nagy, B., Reactive nonholonomic trajectory generation via parametric optimal control (2003) The International Journal of Robotics Research, 22 (7-8), pp. 583-601
dc.descriptionKoon, P., Whittaker, W., (2006) Evaluation of Autonomous Ground Vehicle Skills
dc.descriptionLechner, D., Schaeffer, G., Yahiaoui, G., Colinot, J.P., Naude, C., Onboard estimation of friction potential (2006) FISITA World Automotive Congress, , Japon
dc.descriptionLi, L., Wang, F.-Y., Zhou, Q., Integrated longitudinal and lateral tire/road friction modeling and monitoring for vehicle motion control (2006) Intelligent Transportation Systems IEEE Transactions on, 7 (1), pp. 1-19
dc.descriptionMacIejowski, J.M., (2002) Predictive Control: With Constraints, , Pearson education
dc.descriptionMuller, S., Uchanski, M., Hedrick, K., Estimation of the maximum tire-road friction coefficient (2003) Journal of Dynamic Systems, Measurement, and Control, 125 (4), pp. 607-617
dc.descriptionPauwelussen, J., Dependencies of driver steering control parameters (2012) Vehicle System Dynamics, 50 (6), pp. 939-959
dc.descriptionSiegwart, R., Nourbakhsh, I.R., Scaramuzza, D., (2011) Introduction to Autonomous Mobile Robots, , The MIT Press, second edition, Febraury
dc.descriptionSnider, J.M., (2009) Automatic Steering Methods for Autonomous Automobile Path Tracking. Technical Report, , Robotics Institute Carnegie Mellon University, febraury
dc.descriptionYih, P., (2005) Steer-by-wire: Implications for Vehicle Handling and Safety, , PhD thesis department of mechanical engineering stanford university
dc.languageen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relationProceedings - 2nd SBR Brazilian Robotics Symposium, 11th LARS Latin American Robotics Symposium and 6th Robocontrol Workshop on Applied Robotics and Automation, SBR LARS Robocontrol 2014 - Part of the Joint Conference on Robotics and Intelligent Systems, JCRIS 2014
dc.rightsfechado
dc.sourceScopus
dc.titleDesign And Simulation For Path Tracking Control Of A Commercial Vehicle Using Mpc
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución