Artículos de revistas
Molecular Cloning And Insecticidal Effect Of Inga Laurina Trypsin Inhibitor On Diatraea Saccharalis And Heliothis Virescens
Registro en:
Comparative Biochemistry And Physiology - C Toxicology And Pharmacology. , v. 156, n. 3-4, p. 148 - 158, 2012.
15320456
10.1016/j.cbpc.2012.07.007
2-s2.0-84866383979
Autor
Ramos V.D.S.
Cabrera O.G.
Camargo E.L.O.
Ambrosio A.B.
Vidal R.O.
Da Silva D.S.
Guimaraes L.C.
Marangoni S.
Parra J.R.P.
Pereira G.A.G.
MacEdo M.L.R.
Institución
Resumen
Native Inga laurina (Fabaceae) trypsin inhibitor (ILTI) was tested for anti-insect activity against Diatraea saccharalis and Heliothis virescens larvae. The addition of 0.1% ILTI to the diet of D. saccharalis did not alter larval survival but decreased larval weight by 51%. The H. virescens larvae that were fed a diet containing 0.5% ILTI showed an 84% decrease in weight. ILTI was not digested by the midgut proteinases of either species of larvae. The trypsin levels were reduced by 55.3% in the feces of D. saccharalis and increased by 24.1% in the feces of H. virescens. The trypsin activity in both species fed with ILTI was sensitive to the inhibitor, suggesting that no novel proteinase resistant to ILTI was induced. Additionally, ILTI exhibited inhibitory activity against the proteinases present in the larval midgut of different species of Lepidoptera. The organization of the ilti gene was elucidated by analyzing its corresponding genomic sequence. The recombinant ILTI protein (reILTI) was expressed and purified, and its efficacy was evaluated. Both native ILTI and reILTI exhibited a similar strong inhibitory effect on bovine trypsin activity. These results suggest that ILTI presents insecticidal properties against both insects and may thus be a useful tool in the genetic engineering of plants. © 2012 Elsevier Inc. 156 3-4 148 158 Abdeen, A., Virgos, A., Olivella, E., Villanueva, J., Aviles, X., Gabarra, R., Prat, S., Multiple insect resistance in transgenic tomato plants over-expressing two families of plant proteinase inhibitors (2005) Plant Mol. Biol., 57, pp. 189-202 Alfonso-Rubí, J., Ortego, F., Castañera, P., Carbonero, P., Díaz, I., Transgenic expression of trypsin inhibitor CMe from barley in indica and japonica rice, confers resistance to the rice weevil Sitophilus oryzae (2003) Transgenic Res., 12, pp. 23-31 Babu, S.R., Subrahmanyam, S., Bio-potency of serine proteinase inhibitors from Acacia senegal seeds on digestive proteinases, larval growth and development of Helicoverpa armigera (Hübner) (2010) Pestic. Biochem. Physiol., 98, pp. 349-358 Bhattacharyya, A., Leighton, S.M., Babu, C.R., Bioinsecticidal activity of Archidendron ellipticum trypsin inhibitor on growth and serine digestive enzymes during larval development of Spodoptera litura (2007) Comp. Biochem. Physiol., 145, pp. 669-677 Bijina, B., Chellappan, S., Basheer, S.M., Elyas, K.K., Bahkali, A.H., Chandrasekaran, M., Protease inhibitor from Moringa oleifera leaves: Isolation, purification, and characterization (2011) Process. Biochem., 46, pp. 2291-2300 Boulter, D., Insect pest control by copying nature using genetically engineered crops (1993) Phytochemistry, 34, pp. 1453-1466 Bown, D.P., Wilkinson, H.S., Gatehouse, J.A., Regulation of expression of genes encoding digestive proteases in the gut of a polyphagous lepidopteran larva in response to dietary protease inhibitors (2004) Physiol. Entomol., 29, pp. 278-290 Bradford, M.M., A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254 Breiteneder, H., Radauer, C., A classification of plant food allergens (2004) J. Allergy Clin. Immunol., 113, pp. 821-830 Brioschi, D., Nadalini, L.D., Bengtson, M.H., Sogayar, M.C., Moura, D.S., Silva-Filho, M.C., General up regulation of Spodoptera frugiperda trypsins and chymotrypsins allows its adaptation to soybean proteinase inhibitor (2007) Insect Biochem. Mol. Biol., 37, pp. 1283-1290 Brito, L.O., Lopes, A.R., Parra, J.R.P., Terra, W.R., Silva-Filho, M.C., Adaptation of tobacco budworm Heliothis virescens to proteinase inhibitors may be mediated by the synthesis of new proteinases (2001) Comp. Biochem. Physiol. B, 128, pp. 365-375 Broadway, R.M., Duffey, S.S., The effect of dietary protein on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua (1986) J. Insect Physiol., 32, pp. 673-680 Carlini, C.R., Grossi-De-Sá, M.F., Plant toxic proteins with insecticidal properties, a review on their potentialities as bioinsecticides (2002) Toxicon, 40, pp. 1515-1539 Coelho, M.B., Marangoni, S., MacEdo, M.L.R., Insecticidal action of Annona coriacea lectin against the flour moth Anagasta kuehniella and the rice moth Corcyra cephalonica (Lepidoptera: Pyralidae) (2007) Comp. Biochem. Physiol. C, 146, pp. 406-414 De Leo, F., Bonadé-Bottino, M.A., Ceci, L.R., Gallerani, R., Jouanin, L., Opposite effects on Spodoptera littoralis larvae of high expression level of a trypsin proteinase inhibitor in transgenic plants (1998) Plant Physiol., 118, pp. 997-1004 Dunse, K.M., Stevens, J.A., Lay, F.T., Gaspar, Y.M., Heath, R.L., Anderson, M.A., Coexpression of potato type i and II proteinase inhibitors gives cotton plants protection against insect damage in the field (2010) PNAS, 107, pp. 15011-15015 Erlanger, B.F., Kokowsky, N., Cohen, W., The preparation and properties of two chromogenic substrates of trypsin (1961) Arch. Biochem. Biophys., 95, pp. 271-278 Falco, M.C., Silva, F.M.C., Expression of soybean proteinase inhibitors in transgenic sugarcane plants: Effects on natural defense against Diatraea saccharalis (2003) Plant Physiol. Biochem., 41, pp. 761-766 Fan, S.G., Wu, G.J., Characteristics of plant proteinase inhibitors and their applications in combating phytophagous insects (2005) Bot. Bull. Acad. Sin., 46, pp. 273-292 Farrar, R.R., Barbour, J.D., Kenedy, G.G., Quantifying food consumption and growth in insects (1989) Ann. Entomol. Soc. Am., 82, pp. 593-598 Ferry, N., Edwards, M.G., Gatehouse, T., Campell, P., Christou, P., Gatehouse, A.M.R., Transgenic plants for insect pest control: A forward looking scientific perspective (2006) Transgenic Res., 15, pp. 13-19 Fitt, G.P., The ecology of Heliothis species in relation to agroecosystems (1989) Annu. Rev. Entomol., 34, pp. 17-52 Garcia, V.A., Freire, M.G.M., Novello, J.C., Marangoni, S., MacEdo, M.L.R., Trypsin inhibitor from Poecilanthe parviflora seeds: Purification, characterization, and activity against pest proteinases (2004) Protein J., 23, pp. 343-350 Gatehouse, J.A., Prospects for using proteinase inhibitors to protect transgenic plants against attack by herbivorous insects (2011) Curr. Protein Pept. Sci., 5, pp. 409-416 Girard, C., Le Metayer, M., Bonade-Bottino, M., Pham-Delegue, M.H., Jouanin, L., High level of resistance to proteinase inhibitors may be conferred by proteolytic cleavage in beetle larvae (1998) Insect Biochem. Mol. Biol., 28, pp. 229-237 Girard, C., Le Metayer, M., Zaccomer, B., Bartlet, E., Williams, I., Bonade-Bottino, M., Pham-Delegue, M.H., Jouanin, L., Growth stimulation of beetle larvae reared on transgenic oilseed rape expressing a cysteine proteinase inhibitor (1998) J. Insect Physiol., 44, pp. 263-270 Giri, A.P., Harsulkar, A.M., Deshpande, V.V., Sainani, M.N., Gupta, V.S., Ranjekar, P.K., Chickpea defensive proteinase inhibitors can be inactivated by podborer gut proteinases (1998) Plant Physiol., 116, pp. 393-401 Giri, A.P., Chougule, N.P., Telang, M.A., Gupta, V.S., Engineering insect tolerant plants using plant defensive proteinase inhibitors (2005) Phytochemistry, 8, pp. 117-137 Gomes, C.E.M., Barbosa, A.E.A.D., MacEdo, L.L.P., Pitanga, J.C.M., Moura, F.T., Oliveira, A.S., Moura, R.M., Sales, M.P., Effect of trypsin inhibitor from Crotalaria pallida seeds on Callosobruchus maculatus (cowpea weevil) and Ceratitis capitata (fruit fly) (2005) Plant Physiol. Biochem., 43, pp. 1095-1102 Gotor, C., Pintor-Toro, J.A., Romero, L.C., Isolation of a new member of the soybean Kunitz-type proteinase inhibitors (1995) Plant Physiol., 107, pp. 1015-1016 Harsulkar, A.M., Giri, A.P., Patankar, A.G., Gupta, V.S., Sainani, M.N., Ranjekar, P.K., Deshpande, V.V., Successive use of non-host plant proteinase inhibitors required for effective inhibition of gut proteinases and larval growth of Helicoverpa armigera (1999) Plant Physiol., 121, pp. 450-497 Hartl, M., Giri, A.P., Kaur, H., Baldwin, I.T., Serine proteinase inhibitors specifically defend Solanum nigrum against generalist herbivores but do not influence plant growth and development (2010) Plant Cell, 22, pp. 4158-4175 Hilder, V.A., Gatehouse, A.M.R., Boulter, D., Transgenic plants conferring insect tolerance: Proteinase inhibitor approach (1993) Transgenic Plants Eng. Util., 1, pp. 317-338 Hung, C.H., Peng, P.H., Huang, C.C., Wang, H.L., Chen, Y.J., Chen, Y.L., Chi, L.M., Genomic and cDNA cloning, characterization of Delonix regia trypsin inhibitor (DrTI) gene, and expression of DrTI in Escherichia coli (2007) Biosci. Biotechnol. Biochem., 71, pp. 98-103 Jongsma, M.A., Bolter, C.J., The adaptation of insects to plant proteinase inhibitors (1997) J. Insect Physiol., 43, pp. 885-896 Jongsma, M.A., Bakker, P.L., Peters, J., Bosch, D., Stiekema, W.J., Adaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of gut proteinase activity insensitive to inhibition (1995) Proc. Natl. Acad. Sci. U. S. A., 92, pp. 8041-8045 Kim, J.Y., Park, S.C., Kim, M.H., Lim, H.T., Park, Y., Hahm, K.S., Antimicrobial activity studies on a trypsin-chymotrypsin proteinase inhibitor obtained from potato (2005) Biochem. Biophys. Res. Commun., 330, pp. 921-927 Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685 Lingaraju, M.H., Gowda, L.R., A Kunitz trypsin inhibitor of Entada scandens seeds: Another member with single disulfide bridge (2008) BBA, 1784, pp. 850-855 Lopes, J.L.S., Valadares, N.F., Moraes, D.I., Rosa, J.C., Araújo, H.S.S., Beltramini, L.M., Physico-chemical and antifungal properties of proteinase inhibitors from Acacia plumose (2009) Phytochemistry, 70, pp. 871-879 Lorenzi, H., (2002) Árvores Brasileiras: Manual de Identificação e Cultivos de Plantas Arbóreas Do Brasil, 2. , 2a ed. Editora Plantarum Nova Odessa 368 pp MacEdo, M.L.R., Fernandes, K.V.S., Sales, M.P., Xavier-Filho, J., Vicilins variants and the resistance of cowpea (Vigna unguiculata) seeds to the cowpea weevil (Callosobruchus maculatus) (1993) Comp. Biochem. Physiol. C, 105, pp. 89-94 MacEdo, M.L.R., Mello, G.C., Freire, M.G.M., Novello, J.C., Marangoni, S., Matos, D.G.G., Effect of a trypsin inhibitor from Dimorphandra mollis seeds on the development of Callosobruchus maculates (2002) Plant Physiol. Biochem., 40, pp. 891-898 MacEdo, M.L.R., Garcia, V.A., Freire, M.G.M., Richardson, M., Characterization of a Kunitz trypsin inhibitor with a single disulfide bridge from seeds of Inga laurina (SW.) Willd (2007) Phytochemistry, 68, pp. 1104-1111 MacEdo, M.L.R., Pando, S.C., Chevreuil, L.R., Marangoni, S., Properties of a Kunitz-type trypsin inhibitor from Delonix regia seeds against digestive proteinases of Anagasta kuehniella (Z.) and Corcyra cephalonica (S.) (Lepidoptera: Pyralidae) (2009) Protein Pept. Lett., 16, pp. 1459-1465 MacEdo, M.L.R., Freire, M.G.M., Franco, O.L., Migliolo, L., Oliveira, C.F.R., Practical and theoretical characterization of Inga laurina Kunitz inhibitor on the control of Homalinotus coriaceus (2011) Comp. Biochem. Physiol. B, 158, pp. 164-172 Major, I.L., Constabel, C.P., Functional analysis of the Kunitz trypsin inhibitor family in poplar reveals biochemical diversity and multiplicity in defense against herbivore (2008) Plant Physiol., 146, pp. 888-903 Marchetti, S., Delledonne, M., Fogher, C., Chiabà, C., Chiesa, F., Savazzini, F., Giordano, A., Soybean Kunitz, C-II and PI-IV inhibitor genes confer different levels of insect resistance to tobacco and potato transgenic plants (2000) Theor. Appl. Genet., 101, pp. 519-526 Michaud, D., Avoiding proteinase-mediated resistance in herbivorous pests (1997) Trends Biotechnol., 15, pp. 4-6 Mordue (luntz), A.J., Blackwell, A., Azadirachtin: An update (1993) J. Insect Physiol., 39, pp. 903-924 Oliva, M.L.V., Silva, M.C.C., Sallai, R.C., Brito, M.V., Sampaio, M.U., A novel subclassification for Kunitz proteinase inhibitors from leguminous seeds (2010) Biochimie, 11, pp. 1667-1673 Oliveira, A.S., Migliolo, L., Aquino, R.O., Ribeiro, J.K.C., MacEdo, L.L.P., Andrade, L.B.S., Bemquerer, M.P., Sales, M.P., Identification of a Kunitz-type proteinase inhibitor from Pithecellobium dumosum seeds with insecticidal properties and double activity (2007) J. Agric. Food Chem., 55, pp. 7342-7349 Parde, V.D., Sharma, H.C., Kachole, M.S., In vivo inhibition of Helicoverpa armigera gut pro-proteinase activation by non-host plant proteinase inhibitors (2010) J. Insect Physiol., 56, pp. 1315-1324 Parra, J.R.P., Criação de insetos para estudos com patógenos (1998) Controle Microbiano de Insetos, pp. 1015-1038. , S.B. Alves, FEALQ Piracicaba Parra, J.R.P., Mihsfeldt, L.H., Comparison of artificial diets for rearing the sugarcane borer (1992) Adv. Insect Rearing Res. Pest Manag., pp. 195-209 Pompermayer, P., Lopes, A.R., Terra, W.R., Parra, J.R.P., Falco, M.C., Silva-Filho, M.C., Effects of soybean proteinase inhibitor on development, survival and reproductive potential of the sugarcane borer, Diatraea saccharalis (2001) Entomol. Exp. Appl., 99, pp. 79-85 Pompermayer, P., Falco, M.C., Parra, J.R.P., Silva-Filho, M.C., Coupling diet quality and Bowman-Birk and Kunitz-type soybean proteinase inhibitor effectiveness to Diatraea saccharalis development and mortality (2003) Entomol. Exp. Appl., 109, pp. 217-224 Rayapuram, C., Baldwin, I.T., Using nutritional indices to study LOX3-dependent insect resistance (2006) Plant Cell Environ., 29, pp. 1585-1594 Roy, S., Dutta, S.K., Genomic and cDNA cloning, expression, purification, and characterization of chymotrypsin-trypsin inhibitor from Winged Bean seeds (2009) Biosci. Biotechnol. Biochem., 73, pp. 2671-2676 Ryan, C.A., Proteinase inhibitors in plants: Genes for improving defenses against insects and pathogens (1990) Annu. Rev. Phytopathol., 28, pp. 425-449 Silva, W., Freire, M.G.M., Parra, J.R.P., Marangoni, S., MacEdo, M.L.R., Evaluation of the Adenanthera pavonina seed proteinase inhibitor (ApTI) as a bioinsecticidal tool with potential for the control of Diatraea saccharalis (2011) Process. Biochem., 47, pp. 257-263 Song, S.I., Kim, C.H., Baek, S.J., Choi, Y.D., Nucleotide sequences of cDNAs encoding the precursors for soybean (Glycine max) trypsin inhibitors (Kunitz type) (1993) Plant Physiol., 101, pp. 1401-1402 Telang, M., Srinivasan, A., Patankar, A., Harsulkar, A., Joshi, V., Damle, A., Deshpande, V., Gupta, V., Bitter gourd proteinase inhibitors: Potential growth inhibitors of Helicoverpa armigera and Spodoptera litura (2003) Phytochemistry, 63, pp. 643-652 Telang, M.A., Giri, A.P., Pyati, P.S., Gupta, V.S., Tegeder, M., Franceschi, V.R., Winged bean chymotrypsin inhibitors retard growth of Helicoverpa armigera (2009) Gene, 431, pp. 80-85 Waldbauer, G.P., The consumption and utilization of food by insects (1968) Adv. Insect Physiol., 5, pp. 229-288 Yang, L., Fang, Z., Dicke, M., Van Loon, J.J.A., Jongsma, M.A., The diamondback moth, Plutella xylostella, specifically inactivates Mustard Trypsin Inhibitor 2 (MTI2) to overcome host plant defence (2009) Insect Biochem. Mol. Biol., 39, pp. 55-61 Zhang, D., Yang, Y., Castlebury, L.A., Cerniglia, C.E., A method for the large scale isolation of high transformation efficiency fungal genomic DNA (1996) FEMS Microbiol. Lett., 145, pp. 216-265