dc.creatorSaenz C.A.T.
dc.creatorCurvo E.A.C.
dc.creatorDias A.N.C.
dc.creatorSoares C.J.
dc.creatorConstantino C.J.L.
dc.creatorAlencar I.
dc.creatorGuedes S.
dc.creatorPalissari R.
dc.creatorNeto J.C.H.
dc.date2012
dc.date2015-06-25T20:23:07Z
dc.date2015-11-26T15:18:17Z
dc.date2015-06-25T20:23:07Z
dc.date2015-11-26T15:18:17Z
dc.date.accessioned2018-03-28T22:27:55Z
dc.date.available2018-03-28T22:27:55Z
dc.identifier
dc.identifierApplied Spectroscopy. , v. 66, n. 5, p. 545 - 551, 2012.
dc.identifier37028
dc.identifier10.1366/11-06260
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84860208962&partnerID=40&md5=af27f4c5cb1cb6b3fbf92a29f9572bb3
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89981
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89981
dc.identifier2-s2.0-84860208962
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1259569
dc.descriptionStudies of zircon grains using optical microscopy, micro-Raman spectroscopy, and scanning electron microscopy (SEM) have been carried out to characterize the surface of natural zircon as a function of etching time. According to the surface characteristics observed using an optical microscope after etching, the zircon grains were classified as: (i) homogeneous; (ii) anomalous, and (iii) hybrid. Micro-Raman results showed that, as etching time increases, the crystal lattice is slightly altered for homogeneous grains, it is completely damaged for anomalous grains, and it is altered in some areas for hybrid grains. The SEM (energy dispersive X-ray spectroscopy, EDS) results indicated that, independent of the grain types, where the crystallinity remains after etching, the chemical composition of zircon is approximately 33% SiO 2:65% ZrO 2 (standard natural zircon), and for areas where the grain does not have a crystalline structure, there are variations of ZrO 2 and, mainly, SiO 2. In addition, it is possible to observe a uniform surface density of fission tracks in grain areas where the determined crystal lattice and chemical composition are those of zircon. Regarding hybrid grains, we discuss whether the areas slightly altered by the chemical etching can be analyzed by the fission track method (FTM) or not. Results of zircon fission track and U-Pb dating show that hybrid and homogeneous grains can be used for dating, and not only homogeneous grains. More than 50 sedimentary samples from the Bauru Basin (southeast Brazil) were analyzed and show that only a small amount of grains are homogeneous (10%), questioning the validity of the rest of the grains for thermo-chronological evolution studies using zircon FTM dating. © 2012 Society for Applied Spectroscopy.
dc.description66
dc.description5
dc.description545
dc.description551
dc.descriptionGallagher, K., Brown, R., Johnson, C., Fission track analysis and its applications to geological problems (1998) Annual Review of Earth and Planetary Sciences, 26, pp. 519-572. , DOI 10.1146/annurev.earth.26.1.519
dc.descriptionTagami, T., Zircon fission-track thermochronology and applications to fault studies (2005) Reviews in Mineralogy and Geochemistry, 58, pp. 95-122. , DOI 10.2138/rmg.2005.58.4
dc.descriptionMurakami, M., Kosler, J., Takagi, H., Tagami, T., Dating pseudotachylyte of the Asuke Shear Zone using zircon fission-track and U-Pb methods (2006) Tectonophysics, 424 (1-2), pp. 99-107. , DOI 10.1016/j.tecto.2006.06.006, PII S0040195106003362
dc.descriptionYamada, R., Tagami, T., Nishimura, S., Ito, H., Annealing kinetics of fission tracks in zircon: An experimental study (1995) Chem. Geol. (Isot. Geosci. Sect.)., 122 (1-4), pp. 249-258
dc.descriptionTagami, T., Carter, A., Hurford, A.J., Natural long-term annealing of the zircon fission-track system in Vienna Basin deep borehole samples: Constraints upon the partial annealing zone and closure temperature (1996) Chem. Geol. (Isot. Geosc. Sect. 3)., 130 (1-2), pp. 147-157
dc.descriptionMurakami, M., Yamada, K., Tagami, T., Short-term annealing characteristics of spontaneous fission tracks in zircon: A qualitative description (2006) Chem. Geol., (Isot. Geosc. Sect.)., 227 (3-4), pp. 214-222
dc.descriptionGuedes, S., Hadler N, J.C., Iunes, P.J., Oliveira, K.M.G., Moreira, P.A.F.P., Tello S, C.A., Kinetic model for the annealing of fission tracks in zircon (2005) Radiation Measurements, 40 (2-6), pp. 517-521. , DOI 10.1016/j.radmeas.2005.06.014, PII S1350448705001745, Proceedings of the 22nd International Conference on Nuclear Tracks in Soils
dc.descriptionGarver, J.I., Etching zircon age standards for fission-track analysis (2003) Radiat. Meas., 37 (1), pp. 47-53
dc.descriptionWagner, G., Haute Den P.Van, (1992) Fission-track Dating, 6, p. 285. , Kluwer Academic: Norwell
dc.descriptionBalan, E., Neuville, D.R., Trocellier, P., Fritsch, E., Muller, J.-P., Calas, G., Metamictization and chemical durability of detrital zircon (2001) American Mineralogist, 86 (9), pp. 1025-1033
dc.descriptionPalenik, C.S., Nasdala, L., Ewing, R.C., Radiation damage in zircon (2003) American Mineralogist, 88 (5), pp. 770-781
dc.descriptionNasdala, L., Irmer, G., Wolf, D., The degree of metamictization in zircons: A Raman spectroscopic study (1991) Eur. J. Mineral., 7, pp. 471-478
dc.descriptionNasdala, L., Wenzel, M., Vavra, G., Irmer, G., Wenzel, T., Kober, B., Metamictisation of natural zircon: Accumulaton versus thermal annealing of radioactivity-induced damage (2001) Contributions to Mineralogy and Petrology, 141 (2), pp. 125-144
dc.descriptionZhang, M., Salje, E.K.H., Farnan, I., Graeme-Barber, A., Daniel, P., Ewing, R.C., Clark, A.M., Leroux, H., Metamictization of zircon: Raman spectroscopic study (2000) J. Phys.: Condens. Matter., 12 (8), pp. 1915-1925
dc.descriptionLodzinski, M., Wrzalik, R., Sitarz, M., Micro-Raman spectroscopy studies of some accessory minerals from pegmatites of the Sowie Mts and Strzegom-Sobótka massif, Lower Silesia, Poland (2005) Journal of Molecular Structure, 744-747 (SPEC. ISSUE), pp. 1017-1026. , DOI 10.1016/j.molstruc.2004.12.015, PII S0022286004010075
dc.descriptionHolland, H.D., Gottfried, D., The effect of nuclear radiation on the structure of zircon (1955) Acta Cryst., 8 (6), pp. 291-300
dc.descriptionWasilewski, P.J., Senftle, F.E., Vaz, J.E., Thorpe, A.N., Alexander, C.C., A study of the natural a-recoil damage in zircon by infrared spectra (1973) Radiat. Eff., 17 (3-4), pp. 191-199
dc.descriptionSalje, E.K.H., Chrosch, J., Ewing, R.C., Is "metamictization" of zircon a phase transition? (1999) Am. Miner., 84 (7-8), pp. 1107-1116
dc.descriptionRíos, S., Salje, E.K.H., Zhang, M., Ewing, R.C., Amorphization in zircon: Evidence for direct impact damage (2000) R.C. J. Phys.: Cond. Matter., 12 (11), pp. 2401-2412
dc.descriptionTrachenko, K.T., Dove, M.T., Salje, E., Modelling the percolation-type transition in radiation damage (2000) J. Appl. Phys., 87 (11), pp. 7702-7707. , 2000
dc.descriptionChakoumakos, B.C., Murakami, T., Lumpkin, G.R., Ewing, R.C., Alpha-decay-induced fracturing in zircon: The transition from the crystalline to the metamict state (1987) Science., 236 (4808), pp. 1556-1559
dc.descriptionMcLaren, A.C., Fitz Gerald, J.D., Williams, I.S., The microstructure of zircon and its influence on the age determination from Pb/U isotopic ratios measured by ion microprobe (1994) Geochimica et Cosmochimica Acta, 58 (2), pp. 993-1005. , DOI 10.1016/0016-7037(94)90521-5
dc.descriptionNasdala, L., Metamictization and U-Pb isotopic discordance in single zircons: A combined Raman microprobe and SHRIMP ion probe study (1998) Mineralogy and Petrology, 62 (1-2), pp. 1-27
dc.descriptionGeisler, T., Schleicher, H., Improved U-Th-total Pb dating of zircons by electron microprobe using a simple new background modeling procedure and Ca as a chemical criterion of fluid-induced U-Th-Pb discordance in zircon (2000) Chemical Geology, 163 (1-4), pp. 269-285. , DOI 10.1016/S0009-2541(99)00099-6, PII S0009254199000996
dc.descriptionLumpkin, G.R., Alpha-decay damage and aqueous durability of actinide host phases in natural systems (2001) Journal of Nuclear Materials, 289 (1-2), pp. 136-166. , DOI 10.1016/S0022-3115(00)00693-0
dc.descriptionAraújo, V.D., Reyes-Peres, Y.A., Lima, R.O., Pelosi, A.P., Menezes, L., Córdoba, V.C., Lima-Filho, F.P., (2006) Geol. USP Sér. Cient., 6 (2), pp. 43-49. , Portugeuse
dc.descriptionDias, A.N.C., Tello Saenz, C.A., Constantino, C.J.L., Soares, C.J., Novaes, F.P., Balan, A.M.O.A., (2009) J. Raman Spectrosc., 40 (1), pp. 101-106
dc.descriptionMenneken, M., Nemchin, A.A., Geisler, T., Pidgeon, R.T., Wilde, S.A., Hadean diamonds in zircon from Jack Hills, Western Australia (2007) Nature, 448 (7156), pp. 917-920. , DOI 10.1038/nature06083, PII NATURE06083
dc.descriptionPasschier, C.W., Trouw, R.A.J., (2005) Micro-tectonics, p. 366. , New York: Springer, 2nd ed
dc.descriptionBrandon, M.T., Roden-Tice, M.K., Carver, J.I., Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State (1998) Bulletin of the Geological Society of America, 110 (8), pp. 985-1009
dc.descriptionGeisler, T., Pidgeon, R.T., Van Bronswijk, W., Kurtz, R., Transport of uranium, thorium, and lead in metamict zircon under low-temperature hydrothermal conditions (2002) Chemical Geology, 191 (1-3), pp. 141-154. , DOI 10.1016/S0009-2541(02)00153-5, PII S0009254102001535
dc.descriptionNasdala, L., Zhang, M., Kempe, U., Panczer, G., Gaft, M., Andrut, M., Ploetze, M., Spectroscopic methods applied to zircon (2003) Rev. Mineral. Geochem., 53 (1), pp. 427-467
dc.languageen
dc.publisher
dc.relationApplied Spectroscopy
dc.rightsaberto
dc.sourceScopus
dc.titleEffects Of Etching On Zircon Grains And Its Implications For The Fission Track Method
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución