dc.creator | Ferreira L.C.F. | |
dc.creator | Villamizar-Roa E.J. | |
dc.date | 2013 | |
dc.date | 2015-06-25T19:19:27Z | |
dc.date | 2015-11-26T15:18:10Z | |
dc.date | 2015-06-25T19:19:27Z | |
dc.date | 2015-11-26T15:18:10Z | |
dc.date.accessioned | 2018-03-28T22:27:47Z | |
dc.date.available | 2018-03-28T22:27:47Z | |
dc.identifier | | |
dc.identifier | Communications In Mathematical Sciences. , v. 11, n. 2, p. 421 - 439, 2013. | |
dc.identifier | 15396746 | |
dc.identifier | | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84875188455&partnerID=40&md5=3c34b8a582e79ce5807c2766b4a7edd4 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/89966 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/89966 | |
dc.identifier | 2-s2.0-84875188455 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1259548 | |
dc.description | We consider the convection problem of a fluid with viscosity depending on tempera-ture in either a bounded or an exterior domain Ω⊂ RN,N =2,3. It is assumed that the temperature is transported without thermal conductance (dissipation) by the velocity field which is described by the Navier-Stokes flow. This model is commonly called the Boussinesq system with partial viscosity. In this paper we prove the existence and uniqueness of strong solutions for the Boussinesq system with partial viscosity with initial data in W2-2/p,p(Ω)×W1,q(Ω). For a bounded domain Ω, we also analyze the inviscid limit problem when the conductivity in the fully viscous Boussinesq system goes to zero. © 2013 International Press. | |
dc.description | 11 | |
dc.description | 2 | |
dc.description | 421 | |
dc.description | 439 | |
dc.description | de Almeida, M., Ferreira, L.C.F., On the well posedness and large-time behavior for Boussi-nesq equations in Morrey spaces (2011) Diff. Integral Eqs., 24, pp. 719-742 | |
dc.description | Abels, H., Nonstationary Stokes system with variable viscosity in bounded and unbounded do-mains (2010) Discrete Contin. Dyn. Syst. Ser. S, 3, pp. 141-157 | |
dc.description | Abidi, H., Sur l'unicit́e pour le syst'eme de Boussinesq avec diffusion non lińeaire (2009) J. Math. Pures et. Appl., 91, pp. 80-99 | |
dc.description | Boldrini, J.L., Duŕan, M., Rojas-Medar, M.A., Existence and uniqueness of strong solution for the incompressible micropolar fluid equations in domains of R3 (2010) Ann. Univ. Ferrara, 56, pp. 37-51 | |
dc.description | Brandolese, L., Schonbek, M.E., Large time decay and growth for solutions of a viscous Boussinesq system (2012) Trans. Amer. Math. Soc., 364, pp. 5057-5090 | |
dc.description | Cannon, J.R., DiBenedetto, E., The initial value problem for the Boussinesq equations with data in Lp, in ApproximationMethods for Navier-Stokes Problems (1980) Lecture Notes inMath, 771, pp. 129-144 | |
dc.description | Chae, D., Global regularity for the 2D Boussinesq equations with partial viscosity terms (2006) Adv. in Math., 203, pp. 497-513 | |
dc.description | Chae, D., Imanuvilov, O.Y., Generic solvability of the axisymmetric 3-D Euler equations and the 2-D Boussinesq equations (1999) J. Diff. Eqs., 156, pp. 1-17 | |
dc.description | Danchin, R., Density-dependent incompressible fluids in bounded domains (2006) J. Math. Fluid Mech., 8, pp. 333-381 | |
dc.description | Danchin, R., Paicu, M., Existence and uniqueness results for the Boussinesq system with data in Lorenz spaces (2008) Physica D, 237, pp. 1444-1460 | |
dc.description | Danchin, R., Paicu, M., Le théoréme de Leray et le théoréme de Fujita-Kato pour le systéme de Boussinesq partiellement visqueux (2008) Bull. Soc. Math. France, 136, pp. 261-309 | |
dc.description | DiPerna, R.J., Lions, P.L., Ordinary differential equations, transport theory and Sobolev spaces (1989) Invent. Math., 98, pp. 511-547 | |
dc.description | Feireisl, E., Schonbek, M.E., On the Oberbeck-Boussinesq approximation on unbounded do-mains, Nonlin. Par (2012) Diff. Equ, Abel Symposia, 7, pp. 131-168 | |
dc.description | Ferreira, L.C.F., Villamizar-Roa, E.J., On the stability problem for the Boussinesq equations in weak-Lp spaces (2010) Commun. Pure Appl. Anal., 9, pp. 667-684 | |
dc.description | Ferreira, L.C.F., Villamizar-Roa, E.J., Existence of solutions to the convection problem in a pseudomeasure-type space (2008) Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464, pp. 1983-1999 | |
dc.description | Ferreira, L.C.F., Villamizar-Roa, E.J., Well-posedness and asymptotic behaviour for the convection problem in Rn (2006) Nonlinearity, 19, pp. 2169-2191 | |
dc.description | Graham, A., Shear patterns in a unstable layer of air (1933) Philos. Trans. Roy. Soc. London Ser. A, 232, pp. 285-296 | |
dc.description | Hishida, T., On a class of stable steady flows to the exterior convection problem (1997) J. Diff. Eqs., 141, pp. 54-85 | |
dc.description | Hmidi, T., Keraani, S., On the global well-possedness of the two-dimensional Boussinesq system with a zero diffusivity (2007) Adv. Diff. Eqs., 12, pp. 461-480 | |
dc.description | Hou, T.Y., Li, C., Global well-posedness of the viscous Boussinesq equations (2005) Discrete Cont. Dyn. Syst. A., 12, pp. 1-12 | |
dc.description | Ladyszhenskaya, O., Solonnikov, V.A., Unique solvability of an initial and boundary value problem for viscous incompressible nonhomogeneous fluids (1976) Zap. Naûcn Sem. -Leningrado Otdel Math. Inst. Steklov., 52, pp. 52-109. , (English Translation, J. Soviet Math., 9, 697-749, 1978) | |
dc.description | Lai, M., Pan, R., Zhao, K., Initial boundary value problem for 2D viscous Boussinesq equa-tions (2011) Arch. Rational Mech. Anal., 199, pp. 739-760 | |
dc.description | Lorca, S., Boldrini, J.L., The initial value problem for a generalized Boussinesq model (1999) Nonlinear Anal, 36, pp. 457-480 | |
dc.description | Majda, A., Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lect (2003) Notes Math, 9. , American Mathematical Society/CIMA | |
dc.description | Morimoto, H., Nonstationary Boussinesq equations (1992) J. Fac. Sci. Univ. Tokyo Sect. IA Math., 39, pp. 61-75 | |
dc.description | Pedloski, J., (1978) Geophysical Fluid Dynamics, , Springer-Verlag, New York | |
dc.description | Triebel, H., (1978) Interpolation Theory, Function Spaces, Differential Operators, , North Holland | |
dc.description | Turcotte, D.L., Schubert, G., (1982) Geodynamics: Applications of Continuum Physics to Geological Problems, , JohnWiley and Sons | |
dc.description | Villamizar-Roa, E.J., Ortega-Torres, E., On a generalized Boussinesq model around a rotat-ing obstacle Existence of strong solutions (2011) Discrete Contin. Dyn. Syst. Ser. B, 15, pp. 825-847 | |
dc.language | en | |
dc.publisher | | |
dc.relation | Communications in Mathematical Sciences | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Strong Solutions And Inviscid Limit For Boussinesq: System With Partial Viscosity | |
dc.type | Artículos de revistas | |