dc.creatorFerreira L.C.F.
dc.creatorVillamizar-Roa E.J.
dc.date2013
dc.date2015-06-25T19:19:27Z
dc.date2015-11-26T15:18:10Z
dc.date2015-06-25T19:19:27Z
dc.date2015-11-26T15:18:10Z
dc.date.accessioned2018-03-28T22:27:47Z
dc.date.available2018-03-28T22:27:47Z
dc.identifier
dc.identifierCommunications In Mathematical Sciences. , v. 11, n. 2, p. 421 - 439, 2013.
dc.identifier15396746
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84875188455&partnerID=40&md5=3c34b8a582e79ce5807c2766b4a7edd4
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89966
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89966
dc.identifier2-s2.0-84875188455
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1259548
dc.descriptionWe consider the convection problem of a fluid with viscosity depending on tempera-ture in either a bounded or an exterior domain Ω⊂ RN,N =2,3. It is assumed that the temperature is transported without thermal conductance (dissipation) by the velocity field which is described by the Navier-Stokes flow. This model is commonly called the Boussinesq system with partial viscosity. In this paper we prove the existence and uniqueness of strong solutions for the Boussinesq system with partial viscosity with initial data in W2-2/p,p(Ω)×W1,q(Ω). For a bounded domain Ω, we also analyze the inviscid limit problem when the conductivity in the fully viscous Boussinesq system goes to zero. © 2013 International Press.
dc.description11
dc.description2
dc.description421
dc.description439
dc.descriptionde Almeida, M., Ferreira, L.C.F., On the well posedness and large-time behavior for Boussi-nesq equations in Morrey spaces (2011) Diff. Integral Eqs., 24, pp. 719-742
dc.descriptionAbels, H., Nonstationary Stokes system with variable viscosity in bounded and unbounded do-mains (2010) Discrete Contin. Dyn. Syst. Ser. S, 3, pp. 141-157
dc.descriptionAbidi, H., Sur l'unicit́e pour le syst'eme de Boussinesq avec diffusion non lińeaire (2009) J. Math. Pures et. Appl., 91, pp. 80-99
dc.descriptionBoldrini, J.L., Duŕan, M., Rojas-Medar, M.A., Existence and uniqueness of strong solution for the incompressible micropolar fluid equations in domains of R3 (2010) Ann. Univ. Ferrara, 56, pp. 37-51
dc.descriptionBrandolese, L., Schonbek, M.E., Large time decay and growth for solutions of a viscous Boussinesq system (2012) Trans. Amer. Math. Soc., 364, pp. 5057-5090
dc.descriptionCannon, J.R., DiBenedetto, E., The initial value problem for the Boussinesq equations with data in Lp, in ApproximationMethods for Navier-Stokes Problems (1980) Lecture Notes inMath, 771, pp. 129-144
dc.descriptionChae, D., Global regularity for the 2D Boussinesq equations with partial viscosity terms (2006) Adv. in Math., 203, pp. 497-513
dc.descriptionChae, D., Imanuvilov, O.Y., Generic solvability of the axisymmetric 3-D Euler equations and the 2-D Boussinesq equations (1999) J. Diff. Eqs., 156, pp. 1-17
dc.descriptionDanchin, R., Density-dependent incompressible fluids in bounded domains (2006) J. Math. Fluid Mech., 8, pp. 333-381
dc.descriptionDanchin, R., Paicu, M., Existence and uniqueness results for the Boussinesq system with data in Lorenz spaces (2008) Physica D, 237, pp. 1444-1460
dc.descriptionDanchin, R., Paicu, M., Le théoréme de Leray et le théoréme de Fujita-Kato pour le systéme de Boussinesq partiellement visqueux (2008) Bull. Soc. Math. France, 136, pp. 261-309
dc.descriptionDiPerna, R.J., Lions, P.L., Ordinary differential equations, transport theory and Sobolev spaces (1989) Invent. Math., 98, pp. 511-547
dc.descriptionFeireisl, E., Schonbek, M.E., On the Oberbeck-Boussinesq approximation on unbounded do-mains, Nonlin. Par (2012) Diff. Equ, Abel Symposia, 7, pp. 131-168
dc.descriptionFerreira, L.C.F., Villamizar-Roa, E.J., On the stability problem for the Boussinesq equations in weak-Lp spaces (2010) Commun. Pure Appl. Anal., 9, pp. 667-684
dc.descriptionFerreira, L.C.F., Villamizar-Roa, E.J., Existence of solutions to the convection problem in a pseudomeasure-type space (2008) Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464, pp. 1983-1999
dc.descriptionFerreira, L.C.F., Villamizar-Roa, E.J., Well-posedness and asymptotic behaviour for the convection problem in Rn (2006) Nonlinearity, 19, pp. 2169-2191
dc.descriptionGraham, A., Shear patterns in a unstable layer of air (1933) Philos. Trans. Roy. Soc. London Ser. A, 232, pp. 285-296
dc.descriptionHishida, T., On a class of stable steady flows to the exterior convection problem (1997) J. Diff. Eqs., 141, pp. 54-85
dc.descriptionHmidi, T., Keraani, S., On the global well-possedness of the two-dimensional Boussinesq system with a zero diffusivity (2007) Adv. Diff. Eqs., 12, pp. 461-480
dc.descriptionHou, T.Y., Li, C., Global well-posedness of the viscous Boussinesq equations (2005) Discrete Cont. Dyn. Syst. A., 12, pp. 1-12
dc.descriptionLadyszhenskaya, O., Solonnikov, V.A., Unique solvability of an initial and boundary value problem for viscous incompressible nonhomogeneous fluids (1976) Zap. Naûcn Sem. -Leningrado Otdel Math. Inst. Steklov., 52, pp. 52-109. , (English Translation, J. Soviet Math., 9, 697-749, 1978)
dc.descriptionLai, M., Pan, R., Zhao, K., Initial boundary value problem for 2D viscous Boussinesq equa-tions (2011) Arch. Rational Mech. Anal., 199, pp. 739-760
dc.descriptionLorca, S., Boldrini, J.L., The initial value problem for a generalized Boussinesq model (1999) Nonlinear Anal, 36, pp. 457-480
dc.descriptionMajda, A., Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lect (2003) Notes Math, 9. , American Mathematical Society/CIMA
dc.descriptionMorimoto, H., Nonstationary Boussinesq equations (1992) J. Fac. Sci. Univ. Tokyo Sect. IA Math., 39, pp. 61-75
dc.descriptionPedloski, J., (1978) Geophysical Fluid Dynamics, , Springer-Verlag, New York
dc.descriptionTriebel, H., (1978) Interpolation Theory, Function Spaces, Differential Operators, , North Holland
dc.descriptionTurcotte, D.L., Schubert, G., (1982) Geodynamics: Applications of Continuum Physics to Geological Problems, , JohnWiley and Sons
dc.descriptionVillamizar-Roa, E.J., Ortega-Torres, E., On a generalized Boussinesq model around a rotat-ing obstacle Existence of strong solutions (2011) Discrete Contin. Dyn. Syst. Ser. B, 15, pp. 825-847
dc.languageen
dc.publisher
dc.relationCommunications in Mathematical Sciences
dc.rightsfechado
dc.sourceScopus
dc.titleStrong Solutions And Inviscid Limit For Boussinesq: System With Partial Viscosity
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución