dc.creatorFloriano R.
dc.creatorLeiva D.R.
dc.creatorDeledda S.
dc.creatorHauback B.C.
dc.creatorBotta W.J.
dc.date2013
dc.date2015-06-25T19:19:09Z
dc.date2015-11-26T15:17:20Z
dc.date2015-06-25T19:19:09Z
dc.date2015-11-26T15:17:20Z
dc.date.accessioned2018-03-28T22:27:02Z
dc.date.available2018-03-28T22:27:02Z
dc.identifier
dc.identifierMaterials Research. , v. 16, n. 1, p. 158 - 163, 2013.
dc.identifier15161439
dc.identifier10.1590/S1516-14392012005000162
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84876233691&partnerID=40&md5=c0bdf1a2f59463954412e4ceccfbdcfa
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89897
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89897
dc.identifier2-s2.0-84876233691
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1259425
dc.descriptionMgH2 was processed by short time high-energy ball milling (BM) and cold rolling (CR). A new alternative processing route (CR + BM) using the combination of CR followed by short time BM step was also applied. The effects on the final morphology, crystalline structure and H-sorption properties were evaluated. The CR + BM processing (compared to BM and CR process) resulted in an inhomogeneous particle size distribution and the biggest crystallite size of MgH2, showing that there is a clear dependence between the size/shape of the particles which compose the starting material and the efficiency of crystallite size reduction during the BM process. On the other hand, we observed that a short BM step improved the kinetic properties of the cold rolled material. It shows that the particle size reduction of MgH2 obtained by CR combined with the increase in specific surface area attained by short BM step could be key factors to allow the use of the CR + BM route.
dc.description16
dc.description1
dc.description158
dc.description163
dc.descriptionFu, Y., Kulenovic, R., Mertz, R., The cycle stability of mg-based nanostructured materials (2008) Journal of Alloys and Compounds, 464, pp. 374-376. , http://dx.doi.org/10.1016%2Fj.jallcom.2007.09129
dc.descriptionHanada, N., Hirotoshi, E., Ichikawa, T., Akiba, E., Fujii, H., Sem and tem characterization of magnesium hydride catalyzed with ni nano-particle or nb2o5 (2008) Journal of Alloys and Compounds, 450, pp. 395-399. , http://dx.doi.org/10.1016%2Fj.jallcom.2006.10128
dc.descriptionLiang, G., Huot, J., Boily, S., Van Neste, A., Schulz, R., Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled mgh2 -Tm (tm = ti, v, mn, fe and ni) systems (1999) Journal of Alloys and Compounds, 292, pp. 247-259. , http://dx.doi.org/10.1016%2FS0925-8388%2899%2900442-9
dc.descriptionBarkhordarian, G., Klassen, T., Bormann, R., Fast hydrogen sorption kinetics of nanocrystalline mg using nb2o5 as catalyst (2003) Scripta Materialia, 49, pp. 213-217. , http://dx.doi.org/10.1016%2FS1359-6462%2803%2900259-8
dc.descriptionYavari, A.R., LeMoulec, A., De Castro, F.R., Deledda, S., Friedrichs, O., Botta, W.J., Improvement in h-sorption kinetics of mgh2 powders by using fe nanoparticles generated by reactive fef3 addition (2005) Scripta Materialia, 52, pp. 719-724. , http://dx.doi.org/10.1016%2Fj.scriptamat.2004.12020
dc.descriptionLeiva, D.R., Jorge, A.M., Ishikawa, T.T., Huot, J., Fruchart, D., Miraglia, S., Nanoscale grain refinement and h-sorption properties of mgh2 processed by high-pressure torsion and other mechanical routes (2010) Advanced Engineering Materials, 12, pp. 786-792. , http://dx.doi.org/10.1002%2Fadem.201000030
dc.descriptionSkripnyuk, V., Rabkin, E., Estrin, Y., Lapovok, R., The effect of ball milling and equal channel angular pressing on hydrogen absorptiondesorption properties of mg-4.95 wt% zn-0.71 wt% zr (zk60) alloy (2004) Acta Materialia, 52, pp. 405-414. , http://dx.doi.org/10.1016%2Fj.actamat.2003.09.025
dc.descriptionLeiva, D.R., Floriano, R., Huot, J., Jorge, A.M., Bolfarini, C., Kiminami, C.S., Nanostructured mgh2 prepared by cold rolling and cold forging (2011) Journal of Alloys and Compounds, 509 (S), pp. 444-448. , http://dx.doi.org/10.1016%2Fj.jallcom.2011.01.097
dc.descriptionHuot, J., Nanocrystalline metal hydrides obtained by severe plastic deformations (2012) Metals, 2, pp. 22-40. , http://dx.doi.org/10.3390%2Fmet2010022
dc.descriptionLeiva, D.R., Huot, J., Ishikawa, T.T., Bolfarini, C., Kiminami, C.S., Jorge, A.M., Hydrogen activation behavior of commercial magnesium processed by different severe plastic deformation routes (2011) Materials Science Forum, 667-669, pp. 1047-1051. , http://dx.doi.org/10.4028%2Fwww.scientific.net%2FMSF.667-669.1047
dc.descriptionLang, J., Huot, J., A new approach to the processing of metal hydrides (2011) Journal of alloys and compounds, 509, pp. L18-L22. , http://dx.doi.org/10.1016%2Fj.jallcom.2010.09.173
dc.descriptionVincent, S.D., Lang, J., Huot, J., Addition of catalysts to magnesium hydride by means of cold rolling (2012) Journal of Alloys and Compounds, 512, pp. 290-295. , http://dx.doi.org/10.1016%2Fj.jallcom.2011.09.084
dc.descriptionLu, L., Lai, M.O., (1998) Mechanical Alloying, , http://dx.doi.org/10.1016%2FS0921-5093%2898%2900676-5, Boston: Kluwer
dc.descriptionReed-Hill, R.E., (1973) Physical Metallurgy and Principles, , 2nd ed. D. Van Nostrand Company
dc.descriptionGennari, F.C., Castro, F.J., Urretavizcaya, G., Hydrogen desorption behavior from magnesium hydrides synthesized by reactive mechanical alloying (2001) Journal of alloys and compounds, 321, pp. 46-53. , http://dx.doi.org/10.1016%2FS0925-8388%2800%2901460-2
dc.descriptionVarin, R.A., Czujko, T., Chiu, C., Wronski, Z.J., Particle size effects on the desorption properties of nanostructured magnesium dihydride (mgh2) synthesized by controlled reactive mechanical milling (crmm) (2006) Journal of Alloys and Compounds, 424, pp. 356-364. , http://dx.doi.org/10.1016%2Fj.jallcom.2005.12087
dc.descriptionLn, A., (2008) Hydrogen Technology, , Berlin: Springer Verlag
dc.descriptionchapt. 16: Kinetics and Thermodynamics
dc.descriptionImamura, H., Masanari, K., Kusuhara, M., Katsumoto, H., Sumi, T., Sakata, Y., High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling (2005) Journal of Alloys and Compounds, 386, pp. 211-216. , http://dx.doi.org/10.1016%2Fj.jallcom.2004.04145
dc.languageen
dc.publisher
dc.relationMaterials Research
dc.rightsaberto
dc.sourceScopus
dc.titleNanostructured Mgh2 Obtained By Cold Rolling Combined With Short-time High-energy Ball Milling
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución