Artículos de revistas
Micrornas And Drought Responses In Sugarcane
Registro en:
Frontiers In Plant Science. Frontiers Research Foundation, v. 6, n. FEB, p. - , 2015.
1664462X
10.3389/fpls.2015.00058
2-s2.0-84923253138
Autor
Gentile A.
Dias L.I.
Mattos R.S.
Ferreira T.H.
Menossi M.
Institución
Resumen
There is a growing demand for renewable energy, and sugarcane is a promising bioenergy crop. In Brazil, the largest sugarcane producer in the world, sugarcane plantations are expanding into areas where severe droughts are common. Recent evidence has highlighted the role of miRNAs in regulating drought responses in several species, including sugarcane. This review summarizes the data from miRNA expression profiles observed in a wide array of experimental conditions using different sugarcane cultivars that differ in their tolerance to drought. We uncovered a complex regulation of sugarcane miRNAs in response to drought and discussed these data with the miRNA profiles observed in other plant species. The predicted miRNA targets revealed different transcription factors, proteins involved in tolerance to oxidative stress, cell modification, as well as hormone signaling. Some of these proteins might regulate sugarcane responses to drought, such as reduction of internode growth and shoot branching and increased leaf senescence. A better understanding on the regulatory network from miRNAs and their targets under drought stress has a great potential to contribute to sugarcane improvement, either as molecular markers as well as by using biotechnological approaches. 6 FEB
Agẽncia Globo, (2012) Drought affects the development of sugarcane in Alagoas, , http://g1.globo.com/economia/agronegocios/noticia/2012/11/seca-afeta-desenvolvimento-das-lavouras-de-cana-em-al.html, (Original in portuguese: seca afeta desenvolvimento das lavouras de cana em AL.), Available online at:(Accessed on October 08, 2013) Addo-Quaye, C., Eshoo, T.W., Bartel, D.P., Axtell, M.J., Endogenous siRNA and microRNA targets identified by sequencing of the Arabidopsis degradome (2008) Curr. Biol, 18, pp. 758-762 Arenas-Huertero, C., Perez, B., Rabanal, F., Blanco-Melo, D., De La Rosa, C., Estrada-Navarrete, G., Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress (2009) Plant Mol. Biol, 70, pp. 385-401 Arend, M., Fromm, J., Seasonal change in the drought response of wood cell development in poplar (2007) Tree Physiol, 27, pp. 985-992 Asnaghi, C., Paulet, F., Kaye, C., Grivet, L., Deu, M., Glaszmann, J.C., Application of synteny across Poaceae to determine the map location of a sugarcane rust resistance gene (2000) Theor. Appl. Genet, 101, pp. 962-969 Assmann, S.M., Grantz, D.A., Stomatal response to humidity in sugarcane and soybean: Effect of vapour pressure difference on the kinetics of the blue light response (1990) Plant Cell Environ, 13, pp. 163-169 Associação dos fornecedores de cana de pernambuco, (2012) Prolonged dry lets sugarcane growing cities in emergency, , http://www.afcp.com.br/?p=3992, (Original in Portuguese: Seca prolongada deixa cidades canavieiras em emerge ncia). Available online at: (Accessed on November 19, 2013) Bartel, D.P., MicroRNAs: Genomics, biogenesis, mechanism, and function (2004) Cell, 116, pp. 281-297 Bartel, D.P., MicroRNAs: Target recognition and regulatory functions (2009) Cell, 136, pp. 215-233 Bertolini, E., Verelst, W., Horner, D.S., Gianfranceschi, L., Piccolo, V., Inzé, D., Addressing the role of microRNAs in reprogramming leaf growth during drought stress in Brachypodium distachyon (2013) Mol. Plant, 6, pp. 423-443 Bonnet, E., He, Y., Billiau, K., De Peer, Y., TAPIR, a web server for the prediction of plant microRNA targets, including target mimics (2010) Bioinformatics, 26, pp. 1566-1568 Borrel, A.K., Hammer, G.L., Henzell, R.G., Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield (2000) Crop Sci, 40, pp. 1037-1048 Botha, F.C., Black, K.G., Sucrose phosphate synthase and sucrose synthase activity during maturation of internodal tissue in sugarcane (2000) Funct. Plant Biol, 27, pp. 81-85 Brasilagro., (2013) Pernambuco: Drought devastates sugarcane production in the zona da Mata, , http://www.brasilagro.com.br/conteudo/pe-seca-devasta-producao-de-cana-de-acucar-na-zona-da-mata.html#.VGyPLpPF_Sk, (Original in Portuguese: PE: seca devasta produção de cana-de-açúcar na Zona da Mata). Available online at: (Accessed on November 19, 2013) Budak, H., Akpinar, A., Dehydration stress-responsive miRNA in Brachypodium distachyon: Evident by genome-wide screening of microRNAs expression (2011) Omics, 15, pp. 791-799 Cachorro, P., Ortiz, A., Barcelo, A.R., Cerda, A., Lignin deposition in vascular tissues of Phaseolus vulgaris roots in response to salt stress and Ca2+ ions (1993) Phyton-Ann. Rei Bot. A, 33, pp. 33-40 Camarotto, M., (2012) Drought will cause losses of 35% in the sugarcane harvest in Pernambuco, according to growers, , http://www.valor.com.br/brasil/2904610/seca-causara-perda-de-35-da-safra-de-cana-em-pe-estimam-produtores, (Original in Portuguese: seca causará perda de 35% da safra de cana em PE, estimam produtores). Available online at: (Accessed on October 08, 2013) Carnavale-Bottino, M., Rosario, S., Grativol, C., Thiebaut, F., Rojas, C.A., Farrineli, L., High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane (2013) PLoS ONE, 8 Carthew, R.W., Sontheimer, E.J., Origins and mechanisms of miRNAs and siRNAs (2009) Cell, 136, pp. 642-655 Castro, M., (2008) Cane: Drought will reduce 6.3% of the harvest, , http://www.estadao.com.br/noticias/suplementos,cana-seca-reduzira-63-da-safra,117410,0.htm, (Original in Portuguese: cana: seca reduzirá 6,3% da safra). Available online at: (Accessed on October 08, 2013) Cavalcanti, J., (2010) Cane under drought, , http://www.modclima.com.br/pdf/cana-sob-estiagem.pdf, (Original in Portuguese: cana sob estiagem). Available online at: (Accessed on October 08, 2013) Chapman, E.J., Carrington, J.C., Specialization and evolution of endogenous small RNA pathways (2007) Nat. Rev. Gen, 8, pp. 884-896 Chaves, M.M., Flexas, J., Pinheiro, C., Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell (2009) Ann. Bot, 103, pp. 551-560 Chen, H., Li, Z., Xiong, L., A plant microRNA regulates the adaptation of roots to drought stress (2012) FEBS Lett, 586, pp. 1742-1747 Chen, X., Zhang, Z., Liu, D., Zhang, K., Li, A., Mao, L., SQUAMOSA promoter-binding protein-like transcription factors: Star players for plant growth and development (2010) J. Integr. Plant Biol, 52, pp. 946-951 Cia, M.C., Guimaraes, A.C.R., Medici, L.O., Chabregas, S.M., Azevedo, R.A., Antioxidant responses to water deficit by drought-tolerant and -sensitive sugarcane varieties (2012) Ann. Appl. Biol, 161, pp. 313-324 Clayton, W.D., Renvoize, S.A., Gramineae (1982) Flora of Tropical East Africa, pp. 700-767. , ed R. M. Polhill (Rotterdam: Balkema) Commodity Research Bureau, (2015) The 2015 CRB commodity yearbook, , Chicago, IL: Commodity Research Bureau Conab (Companhia nacional de abastecimento), (2013) Acompanhamento de safra brasileira: Cana-de-açúcar, terceiro levantamento, abril/2013, , Brasília: Companhia Nacional de Abastecimento Cordeiro, G.M., Casu, R., McIntyre, C.L., Manners, J.M., Henry, R.J., Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum (2001) Plant Sci, 160, pp. 1115-1123 Cuperus, J.T., Fahlgren, N., Carrington, J.C., Evolution and functional diversification of MIRNA genes (2011) Plant Cell, 23, pp. 431-442 D'Hont, A., Grivet, L., Feldmann, P., Glaszmann, J.C., Rao, S., Berding, N., Characterization of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics (1996) Mol. Genet. Genomics, 250, pp. 405-413 Dai, X., Zhao, P.X., psRNATarget: A plant small RNA target analysis server (2011) Nucleic Acids Res, 39, pp. W155-W159 Dezar, C.A., Gago, G.M., Gonzalez, D.H., Chan, R.L., Hahb-4, a sunflower homeobox-leucine zipper gene, is a developmental regulator and confers drought tolerance to Arabidopsis thaliana plants (2005) Transgenic Res, 14, pp. 429-440 Dharmasiri, N., Dharmasiri, S., Estelle, M., The F-box protein TIR1 is an auxin receptor (2005) Nature, 435, pp. 441-445 Dillon, S.L., Shapter, F.M., Henry, R.J., Cordeiro, G., Izquierdo, L., Domestication to crop improvement: Genetic resources for Sorghum and Saccharum (Andropogoneae) (2007) Ann. Bot, 100, pp. 975-989 Ding, J., Zhou, S., Guan, J., Finding MicroRNA targets in plants: Current status and perspectives (2012) Genomics Proteomics Bioinformatics, 10, pp. 264-275 Ditt, R.F., Gentile, A., Tavares, R.G., Camargo, S.R., Da Fernandez, J.H., Silva, M.J., Analysis of the stress-inducible transcription factor SsNAC23 in sugarcane plants (2011) Sci. Agric, 68, pp. 454-461 Eamens, A.L., Smith, N.A., Curtin, S.J., Wang, M.B., Waterhouse, P.M., The Arabidopsis thalianadouble-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes (2009) RNA, 15, pp. 2219-2235 Eldem, V., Çelikkol Akçay, U., Ozhuner, E., Bakir, Y., Uranbey, S., Unver, T., Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing (2012) PLoS ONE, 7 Fahlgren, N., Carrington, J.C., miRNA target prediction in plants (2010) Methods Mol. Biol, 592, pp. 51-57 Fahlgren, N., Howell, M.D., Kasschau, K.D., Chapman, E.J., Sullivan, C.M., Cumbie, J.S., High-throughput sequencing of Arabidopsis microRNAs: Evidence for frequent birth and death of MIRNA genes (2007) PLoS ONE, 2 Fang, Y., Spector, D.L., Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants (2007) Curr. Biol, 17, pp. 818-823 Ferreira, T.H., Gentile, A., Vilela, R.D., Costa, G.G.L., Dias, L.I., Endres, L., microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.) (2012) PLoS ONE, 7 Frazier, T.P., Sun, G., Burklew, C.E., Zhang, B., Salt and drought stresses induce the aberrant expression of microrna genes in tobacco (2011) Mol. Biotechnol, 49, pp. 159-165 G1 Agency, (2012) Drought affects 195 municipalities and 2 cities in PB will have water rationing, , http://g1.globo.com/pb/paraiba/noticia/2012/10/seca-afeta-195-municipios-da-pb-e-2-cidades-vao-ter-racionamento-de-agua.html, (Original in Portuguese: seca afeta 195 municípios da PB e 2 cidades vão ter racionamento de água). Available online at: (Accessed on November 19, 2014) Garcia, D., A miRacle in plant development: Role of microRNAs in cell differentiation and patterning. Garcia, D (2008) Sem. Cell Dev. Biol, 19, pp. 586-595 Gascho, G.J., Shih, S.F., Sugarcane (1983) Crop Water Relations, pp. 445-479. , eds I. D. Teare and M. M. Peet (New York, NY: John Wiley & Sons) Gaxiola, R.A., Li, J., Undurraga, S., Dang, L.M., Allen, G.J., Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump (2001) Proc. Natl. Acad. Sci. U.S.A, 98, pp. 11444-11449 Gentile, A., Ferreira, T.H., Mattos, R.S., Dias, L.I., Hoshino, A.A., Carneiro, M.S., Effects of drought on the microtranscriptome of field-grown sugarcane plants (2013) Planta, 237, pp. 783-798 George, S., Venkataraman, G., Parida, A., A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco (2010) J. Plant Physiol, 167, pp. 311-318 German, M.A., Pillay, M., Jeong, D.H., Hetawal, A., Luo, S., Janardhanan, P., Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends (2008) Nat. Biotechnol, 26, pp. 941-946 Golldack, D., Luking, I., Yang, O., Plant tolerance to drought and salinity: Stress regulating transcription factors and their functional significance in the cellular transcriptional network (2011) Plant Cell Rep, 30, pp. 1383-1391 Phylogeny and subfamilial classification of grasses (Poaceae) (2001) Ann. Missouri Bot. Gard, 88, pp. 373-457 Graça, J.P., Rodrigues, F.A., Farias, J.R.B., Oliveira, M.C.N., Hoffmann-Campo, C.B., Zingaretti, S.M., Physiological parameters in sugarcane cultivars submitted to water deficit (2010) Brazil. J. Plant Physiol, 22, pp. 189-197 Inman-Bamber, N.G., Sugarcane water stress criteria for irrigation and drying off (2004) Field Crops Res, 89, pp. 107-122 Inman-Bamber, N.G., Smith, D.M., Water relations in sugarcane and response to water deficits (2005) Field Crops Res, 92, pp. 185-202 Inman-Bamber, G., Sugarcane Yield and Yield-Limiting Processes (2014) Sugarcane: Physiology, Biochemistry & Functional Biology, pp. 579-600. , eds P. H. Moore and F. C. Botha (Cambridge: Willey-Blackwell) Jannoo, N., Grivet, L., Chantret, N., Garsmeur, O., Glaszmann, J.C., Arruda, P., Orhtologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome (2007) Plant J, 50, pp. 574-585 Ji, W., Zhu, Y., Li, Y., Yang, L., Zhao, X., Cai, H., Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco (2010) Biotechnol. Lett, 32, pp. 1173-1179 Jones-Rhoades, M.W., Bartel, D.P., Computational identification of plant microRNAs and their targets, including a stress-induced miRNA (2004) Mol. Cell, 14, pp. 787-799 Kantar, M., Lucas, S.J., Budak, H., miRNA expression patterns of Triticum dicoccoides in response to shock drought stress (2011) Planta, 233, pp. 471-484 Kantar, M., Unver, T., Budak, H., Regulation of barley miRNAs upon dehydration stress correlated with target gene expression (2010) Funct. Integr. Genomics, 10, pp. 493-507 Kapur, R., Duttamajumder, S.K., Rao, K.K., A breeder's perspective on the tiller dynamics in sugarcane (2011) Curr. Sci, 100, pp. 183-189 Krishnaswamy, S., Verma, S., Rahman, M.H., Kav, N.N., Functional characterization of four APETALA2-family genes (RAP2.6, RAP2.6L, DREB19 and DREB26) in Arabidopsis (2011) Plant Mol. Biol, 75, pp. 107-127 Krüger, J., Rehmsmeier, M., RNAhybrid: Microrna target prediction easy, fast and flexible (2006) Nucleic Acids Res, 34, pp. W451-W454 Kumar, D., Breeding for drought resistance (2005) Abiotic stresses: Plant Resistance through Breeding and Molecular Approaches, pp. 145-175. , ed M. Ashraf, P. J. C. Harris, (New York, NY: The Haworth Press) Kurihara, Y., Takashi, Y., Watanabe, Y., The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis (2006) RNA, 12, pp. 206-212 Lee, Y., Kim, M., Han, J.J., Yeom, K.H., Lee, S., Baek, S.H., MicroRNA genes are transcribed by RNA polymerase II (2004) Embo J, 23, pp. 4051-4060 Li, B., Qin, Y., Duan, H., Yin, W., Xia, X., Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica (2011) J. Exp. Bot, 62, pp. 3765-3779 Li, H., Dong, Y., Yin, H., Wang, N., Yang, J., Liu, X., Characterization of the stress associated microRNAs in Glycine max by deep sequencing (2011) BMC Plant Biol, 11, p. 170 Li, J., Yang, Z., Yu, B., Liu, J., Chen, X., Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis (2005) Curr. Biol, 15, pp. 1501-1507 Li, W., Cui, X., Meng, Z., Huang, X., Xie, Q., Wu, H., Transcriptional Regulation of Arabidopsis MIR168a and ARGONAUTE1 homeostasis in abscisic acid and abiotic stress responses (2012) Plant Physiol, 158, pp. 1279-1292 Li, W.X., Oono, Y., Zhu, J., He, X.J., Wu, J.M., Lida, K., The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance (2008) Plant Cell, 20, pp. 2238-2251 Liu, H.H., Tian, X., Li, Y., Wu, C., Zheng, C., Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana (2008) RNA, 14, pp. 836-843 Liu, Q., Wang, F., Axtell, M.J., Analysis of complementarity requirements for plant MicroRNA targeting using a nicotiana benthamiana quantitative transient assay (2014) Plant Cell, 26, pp. 741-753 Llave, C., Franco-Zorrilla, J.M., Solano, R., Barajas, D., Target validation of plant microRNAs (2011) MicroRNAs in Development: Methods and Protocols, Methods in Molecular Biology, 732, pp. 187-208. , ed T. Dalmay (Cham: Springer International Publishing AG) Llave, C., Xie, Z., Kasschau, K.D., Carrington, J.C., Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA (2002) Science, 297, pp. 2053-2056 Lobbes, D., Rallapalli, G., Schmidt, D.D., Martin, C., Clarke, J., SERRATE: A new player on the plant microRNA scene (2006) EMBO Rep, 7, pp. 1052-1058 Lopes, M.S., Araus, J.L., van Heerden, P.D.R., Foyer, C.H., Enhancing drought tolerance in C4 crops (2011) J. Exp. Bot, 62, pp. 3135-3153 Ma, H.S., Liang, D., Shuai, P., Xia, X.L., Yin, W.L., The salt- and drought- inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana (2010) J. Exp. Bot, 61, pp. 4011-4019 Margis, R., Fusaro, A.F., Smith, N.A., Curtin, S.J., Watson, J.M., Finnegan, E.J., The evolution and diversification of Dicers in plants (2006) FEBS Lett, 580, pp. 2442-2450 Meng, Y., Shao, C., Wang, H., Chen, M., The regulatory activities of plant microRNAs: A more dynamic perspective (2011) Plant Physiol, 157, pp. 1583-1595 Ming, R., Liu, S.C., Lin, Y.R., Da SILVA, J., Wilson, W., Braga, D., Detailed alignment of saccharum and sorghum chromosomes: Comparative organization of closely related diploid and polyploid genomes (1998) Genetics, 150, pp. 1663-1682 Ming, R., Del Monte, T.A., Hernandez, E., Moore, P.H., Irvine, J.E., Paterson, A.H., Comparative analysis of QTLs affecting plant height and flowering among closely-related diploid and polyploid genomes (2002) Genome, 45, pp. 794-803 Ming, R., Liu, S.C., Bowers, J.E., Moore, P.H., Irvine, J.E., Paterson, A.H., Construction of a Saccharum consensus genetic map from two interspecific crosses (2002) Crop Sci, 42, pp. 570-583 Ming, R., Wang, Y.W., Draye, X., Moore, P.H., Irvine, J.E., Paterson, A.H., Molecular dissection of complex traits in autopolyploids: Mapping QTLs affecting sugar yield and related traits in sugarcane (2002) Theor. Appl. Genet, 105, pp. 332-345 Miranda, L.L.D., Vasconcelos, A.C.M., Landell, M.G., Xavier, M.A., Viveiro de mudas. em: Leila luci dinardo-miranda antõnio carlos machado de vasconcelos marcos guimarães de andrade landell. (org.). cana-de-açúcar. 1ed (2008) Campinas, 1, pp. 535-546 Moqadam, F.A., Pieters, R., Den Boer, M.L., The hunting of targets: Challenge in miRNA research (2013) Leukemia, 27, pp. 16-23 Moxon, S., Jing, R., Szittya, G., Schwach, F., Rusholme Pilcher, R.L., Moulton, V., Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening (2008) Genome Res, 18, pp. 1602-1609 Mutum, R.D., Balyan, S.C., Kansal, S., Agarwal, P., Kumar, S., Kumar, M., Evolution of variety-specific regulatory schema for expression of osa-miR408 in indica rice varieties under drought stress (2013) FEBS J, 280, pp. 1717-1730 Naqvi, A.R., Sarwat, M., Hasan, S., Roychodhury, N., Biogenesis, functions and fate of plant microRNAs (2012) J. Cell Physiol, 227, pp. 3163-3168 Nelson, D.E., Repetti, P.P., Adams, T.R., Creelman, R.A., Wu, J., Warner, D.C., Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres (2007) Proc. Natl. Acad. Sci. U.S.A, 104, pp. 16450-16455 Ni, Z., Hu, Z., Jiang, Q., Zhang, H., Overexpression of gma-MIR394a confers tolerance to drought in transgenic Arabidopsis thaliana (2012) Biochem. Biophys. Res. Commun, 427, pp. 330-335 Ni, Z., Hu, Z., Jiang, Q., Zhang, H., GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress (2013) Plant Mol. Biol, 82, pp. 113-129 Ortiz-Morea, F.A., Vicentini, R., Silva, G.F.F., Silva, E.M., Carrer, H., Rodrigues, A.P., Global analysis of the sugarcane microtranscriptome reveals a unique composition of small RNAs associated with axillary bud outgrowth (2013) J. Exp. Bot, 64, pp. 2307-2320 Palhares, I., (2014) Drought causes break up to 15% in crops in the region of Ribeirão Preto, , http://www1.folha.uol.com.br/cotidiano/ribeiraopreto/2014/10/1537883-seca-provoca-quebra-de-ate-15-em-safras-na-regiao-de-ribeirao-preto.shtml, (Original in Portuguese: seca provoca quebra de até 15% em safras na região de Ribeirão Preto). Available online at: (Accessed on November 19, 2014) Park, S., Li, J.S., Pittman, J.K., Berkowitz, G.A., Yang, H.B., Undurraga, S., Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants (2005) Proc. Natl. Acad. Sci. U.S.A, 102, pp. 18830-18835 Pastina, M.M., Malosetti, M., Gazaffi, R., Mollinari, M., Margarido, G.R.A., Oliveira, K.M., A mixed model QTL analysis for sugarcane multiple-harvest-location trial data (2012) Theor. Appl. Genet, 124, pp. 835-849 Piperidis, G., Piperidis, N., D'hont, A., Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane (2010) Mol. Genet. Genomics, 284, pp. 65-73 Ramesh, P., Effect of different levels of drought during the formative phase on growth parameters and its relationship with dry matter accumulation in sugarcane (2000) J. Agron. Crop Sci, 185, pp. 83-89 Reinhart, B.J., Weinstein, E.G., Rhoades, M.W., Bartel, B., Bartel, D.P., MicroRNAs in plants (2002) Genes Dev, 16, pp. 1616-1626 Ren, Y., Chen, L., Zhang, Y., Kang, X., Zhang, Z., Wang, Y., Identification of novel and conserved Populus tomentosa microRNA as components of a response to water stress (2012) Funct. Integr. Genomics, 12, pp. 327-339 Rhoades, M.W., Lim, L.P., Burge, C.B., Bartel, B., Bartel, D.P., Prediction of plant microRNA targets (2002) Cell, 110, pp. 513-520 Ribeiro, R.V., Machado, R.S., Machado, E.C., Machado, D.F.S.P., Magalhães Filho, J.R., Landell, M.G.A., Revealing drought-resistance and productive patterns in sugarcane genotypes by evaluating both physiological responses and stalk yield (2013) Exp. Agric, 49, pp. 212-224 Rivero, R.M., Kojima, M., Gepstein, A., Sakakibara, H., Mittler, R., Gepstein, S., Delayed leaf senescence induces extreme drought tolerance in a flowering plant (2007) Proc. Natl. Acad. Sci. U.S.A, 104, pp. 19631-19636 Robertson, M.J., Donaldson, R.A., Changes in the components of cane and sucrose yield in response to drying-off of sugarcane before harvest (1998) Field Crops Res, 55, pp. 201-208 Rodrigues, F.A., Graça, J.P., Laia, M.L., Nhani, A., Jr., Galbiati, J.A., Ferro, M.I.T., Sugarcane genes differentially expressed during water deficit (2011) Biol. Plant, 55, pp. 43-53 Rodrigues, F.A., Laia, M.L., Zingaretti, S.M., Analysis of gene expression profiles under water stress in tolerant and sensitive sugarcane plant (2009) Plant Sci, 176, pp. 286-302 Rogers, K., Chen, X., Biogenesis, turnover, and mode of action of plant microRNAs (2013) Plant Cell, 25, pp. 2383-2399 Sánchez-Ken, J.G., Clark, L.G., Phylogeny and a new tribal classification of the Panicoideaes. l. (Poaceae) based on plastid and nuclear sequence data and structural data (2010) Am. J. Bot, 97, pp. 1732-1748 Sánchez-Ken, J.G., Clark, L.G., Kellogg, E.A., Kay, E.E., Reinstatement and emendation of subfamily Micrairoideae (Poaceae) (2007) Syst. Bot, 32, pp. 71-80 Setta, N., Monteiro-Vitorello, C.B., Metcalfe, C.J., Cruz, G.M.Q., Del Bem, L.E.V., Vicentini, R., Building the sugarcane genome for biotechnology and identifying evolutionary trends (2014) BMC Genomics, 15, p. 540 Shaik, R., Ramakrishna, W., Bioinformatic analysis of epigenetic and microRNA mediated regulation of drought responsive genes in rice (2012) PLoS ONE, 7 Shen, J., Xie, K., Xiong, L., Global expression profiling of rice microRNAs by one-tube stem-loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress responses (2010) Mol. Genet. Genomics, 284, pp. 477-488 Shuai, P., Liang, D., Zhang, Z., Yin, W., Xia, X., Identification of drought-responsive and novel Populus trichocarpa microRNAs by high- throughput sequencing and their targets using degradome analysis (2013) BMC Genomics, 14, p. 233 Singels, A., Kennedy, A.J., Bezuidenhout, C.N., The effect of water stress on sugarcane biomass accumulation and partitioning (2000) SA Sugar Technol. Assoc, 74, pp. 169-172 Silva, M.A., Jifon, J.L., Da Silva, J.A.G., Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane (2007) Brazil. J. Plant Physiol, 19, pp. 193-201 Silva, M.A., Soares, R.A.B., Landell, M.G.A., Campana, M.P., Agronomic performance of sugarcane families in response to water stress (2008) Bragantia, 67, pp. 655-661 Silva, V., (2013) Drought will reduce by 30% sugarcane harvest in Paraíba, , http://ne10.uol.com.br/canal/cotidiano/economia/noticia/2013/04/12/seca-deve-reduzir-30_porcento-da-producao-de-cana-na-paraiba-412047.php, (Original in Portuguese: seca deve reduzir 30% da produção de cana na Paraíba). Available online at: (Accessed on October 08, 2013) Sindaçucar., (2012) Drought punishes sugarcane region with only 5.7 mm of rain in November, , http://www.sindacucar-al.com.br/2012/12/seca-castiga-regiao-canavieira-com-apenas-57-mm-de-chuva-em-novembro/, (Original in Portuguese: seca castiga região canavieira com apenas 5,7 mm de chuva em novembro). (Accessed on November 19, 2014) Singh, S., Rao, P.N.G., Varietal differences in growth characteristics in sugarcane (1987) J. Agri. Sci, 108, pp. 245-247 Smith, J.P., Lawn, R.J., Nable, R.O., Investigations into the root:shoot relationship of sugarcane and some implications for rop productivity in the presence of sub-optimal conditions (1999) Proc. Austr. Soc. Sugar Cane Technol, 21, pp. 108-113 Srivastava, P.K., Moturu, T.R., Pandey, P., Baldwin, I.T., Pandey, S.P., A comparison of performance of planta miRNA target prediction tools and the characterization of features for genome-wide target prediction (2014) BMC Genomics, 15, p. 348 Stephenson, T.J., McIntyre, C.L., Collet, C., Xue, G.P., Genome-wide identification and expression analysis of the NF-Y family of transcription factors in Triticum aestivum (2007) Plant Mol. Biol, 65, pp. 77-92 Sun, G., Stewart, C.N., Xiao, P., Zhang, B., Microrna expression analysis in the cellulosic biofuel crop switchgrass (Panicum virgatum) under abiotic stress (2012) PLoS ONE, 7 Sun, X., Dong, B., Yin, L., Zhang, R., Du, W., Liu, D., PMTED: A plant microRNA target expression database (2013) BMC Bioinformatics, 14, p. 174 Sunkar, J., Zhu, J., Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis (2004) Plant Cell, 16, pp. 2001-2019 Sunkar, R., Zhou, X., Zheng, Y., Zhang, W., Zhu, J., Identification of novel and candidate miRNAs in rice by high throughput sequencing (2008) BMC Plant Biol, 8, p. 25 Thiebaut, F., Grativol, C., Carnavale-Bottino, M., Rojas, C.A., Tanurdzic, L.O.S., Farinelli, L., Computational identification and analysis of novel sugarcane microRNAs (2012) BMC Genomics, 13, p. 290 Thomson, D.W., Bracken, C.P., Goodall, G.J., Experimental strategies for microRNA target identification (2011) Nucleic Acids Res, 39, pp. 6845-6853 Vaucheret, H., Plant argonautes (2008) Trends Plant Sci, 13, pp. 350-358 Vettore, A.L., Da Silva, F.R., Kemper, E.L., Souza, G.M., Da Silva, A.M., Ferro, M.I., Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane (2003) Genome Res, 13, pp. 2725-2735 Voinnet, O., Origin, biogenesis, and activity of plant microRNAs (2009) Cell, 136, pp. 687-699 Wang, L., Mai, Y.X., Zhang, Y.C., Luo, Q., Yang, H.Q., MicroRNA171c-targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis (2010) Mol. Plant, 3, pp. 794-806 Wang, J., Roe, B., Macmil, S., Yu, Q., Murray, J.E., Tang, H., Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes (2010) BMC Genomics, 11, p. 261 Xia, K., Wang, R., Ou, X., Fang, Z., Tian, C., Duan, J., OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice (2012) PLoS ONE, 7 Xie, F., Zhang, B., Target-align: A tool for plant microRNA target identification (2010) Bioinformatics, 26, pp. 3002-3003 Xie, Z., Allen, E., Wilken, A., Carrington, J.C., DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana (2005) PNAS, 102, pp. 12984-12989 Xuan, P., Guo, M., Huang, Y., Li, W., Huang, Y., MaturePred: Efficient identification of microRNAs within novel plant pre-miRNAs (2011) PLoS ONE, 6 Yamaguchi, M., Ohtani, M., Mitsuda, N., Kubo, M., Ohme-Takagi, M., Fukuda, H., VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in arabidopsis (2010) Plant Cell, 22, pp. 1249-1263 Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R.W., Methylation as a crucial step in plant microRNA biogenesis (2005) Science, 307, pp. 932-935 Zanca, A.S., Vicentini, R., Ortiz-Morea, F.A., Del Bem, L.E., da Silva, M.J., Vincentz, M., Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane (2010) BMC Plant Biol, 10, p. 260 Zhang, B., Pan, X., Wang, Q., Cobb, G.P., Anderson, T.A., Srisvastava Computational identification of microRNAs and their targets (2006) Comput. Biol. Chem, 30, pp. 395-407 Zhang, H., Shen, G., Kuppu, S., Gaxiola, R., Payton, P., Creating drought- and salt-tolerant cotton by overexpressing a vacuolar pyrophosphatase gene (2011) Plant Signal. Behav, 6, pp. 861-863 Zhang, L., Chia, J.M., Kumari, S., Stein, J.C., Liu, Z., Narechania, A., A genome-wide characterization of microRNA genes in maize (2009) PLoS Genet, 5 Zhang, Y., miRU: An automated plant miRNA target prediction server (2005) Nucleic Acids Res, 33, pp. W701-W704 Zhang, Z., Wei, L., Zou, X., Tao, Y., Liu, Z., Zheng, Y., Submergence-responsive MicroRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells (2008) Ann. Bot. (Lond.), 102, pp. 509-519 Zhao, B., Liang, R., Ge, L., Li, W., Xiao, H., Lin, H., Identification of drought-induced microRNAs in rice (2007) Biochem. Biophys. Res. Commun, 354, pp. 585-590 Zhou, L., Liu, Y., Liu, Z., Kong, D., Duan, M., Luo, L., Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa (2010) J. Exp. Bot, 61, pp. 4157-4168