Artículos de revistas
Taxonomic Assessment And Enzymes Production By Yeasts Isolated From Marine And Terrestrial Antarctic Samples
Registro en:
Extremophiles. , v. 17, n. 6, p. 1023 - 1035, 2013.
14310651
10.1007/s00792-013-0584-y
2-s2.0-84886249030
Autor
Duarte A.W.F.
Dayo-Owoyemi I.
Nobre F.S.
Pagnocca F.C.
Chaud L.C.S.
Pessoa A.
Felipe M.G.A.
Sette L.D.
Institución
Resumen
The aim of the present study was to investigate the taxonomic identity of yeasts isolated from the Antarctic continent and to evaluate their ability to produce enzymes (lipase, protease and xylanase) at low and moderate temperatures. A total of 97 yeast strains were recovered from marine and terrestrial samples collected in the Antarctica. The highest amount of yeast strains was obtained from marine sediments, followed by lichens, ornithogenic soils, sea stars, Salpa sp., algae, sea urchin, sea squirt, stone with lichens, Nacella concinna, sea sponge, sea isopod and sea snail. Data from polyphasic taxonomy revealed the presence of 21 yeast species, distributed in the phylum Ascomycota (n = 8) and Basidiomycota (n = 13). Representatives of encapsulated yeasts, belonging to genera Rhodotorula and Cryptococcus were recovered from 7 different Antarctic samples. Moreover, Candida glaebosa, Cryptococcus victoriae, Meyerozyma (Pichia) guilliermondii, Rhodotorula mucilaginosa and R. laryngis were the most abundant yeast species recovered. This is the first report of the occurrence of some species of yeasts recovered from Antarctic marine invertebrates. Additionally, results from enzymes production at low/moderate temperatures revealed that the Antarctic environment contains metabolically diverse cultivable yeasts, which could be considered as a target for biotechnological applications. Among the evaluated yeasts in the present study 46.39, 37.11 and 14.43 % were able to produce lipase (at 15 °C), xylanase (at 15 °C) and protease (at 25 °C), respectively. The majority of lipolytic, proteolytic and xylanolytic strains were distributed in the phylum Basidiomycota and were mainly recovered from sea stars, lichens, sea urchin and marine sediments. © 2013 Springer Japan. 17 6 1023 1035 Almeida, J.M.G.C.F., Yeast community survey in the Tagus estuary (2005) FEMS Microbiol Ecol, 53, pp. 295-303 Arenz, B.E., Blanchette, R.A., Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys (2010) Soil Biol Biochem, 43, pp. 308-315 Bölter, M., Kandeler, E., Pietr, S.J., Seppelt, R.D., Heterotrophic Microbes, Microbial and Enzymatic Activity in Antarctic Soils (2002) Geoecol Antarct Ice-Free Coast Landsc Ecol Stud, 154, pp. 189-214 Bon, E.P., Costa, R.B., Silva, M.V.A., Leitao, V.S.F., Freitas, S.P., Ferrara, M.A., Mercado e Perspectivas de Uso de Enzimas Industriais e Especiais no Brasil (2008) Interciência, Rio De Janeiro, 20, pp. 463-488. , In: Enzimas em Biotecnologia- Produção, Aplicações e Mercado, Ed Burgaud, G., Arzur, D., Durand, L., Cambon-Bonavita, M., Barbier, G., Marine culturable yeasts in deep-sea hydrothermal vents: species richness and association with fauna (2010) FEMS Microbiol Ecol, 73, pp. 121-133 Carrasco, M., Rozas, J.M., Barahona, S., Alcaíno, J., Cifuentes, V., Baeza, M., Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region (2012) BMC Microbiol, 12, p. 251 Charoenchai, C., Fleet, G.H., Henschke, P.A., Todd, B., Screening of non-Saccharomyces wine yeasts for the presence of extracellular hydrolytic enzymes (1997) Aust J Grape Wine Res, 3, pp. 2-8 Connell, L., Redman, R., Craig, S., Scorzetti, G., Iszard, M., Rodriguez, R., Diversity of soil yeasts isolated from South Victoria Land, Antarctica (2008) Microbiol Ecol, 56, pp. 448-459 Crowe, J.H., Crowe, L.M., Carpenter, J.F., Wistrom, C.A., Stabilization of dry phospholipid bilayers and proteins by sugars (1987) Biochem J, 242, pp. 1-10 Crowe, J.H., Hoekstra, F.A., Crowe, L.M., Anhydrobiosis (1992) Annu Rev Physiol, 54, pp. 579-599 Feller, G., Gerday, C., Psychrophilic enzymes: hot topics in cold adaptation (2003) Nat Rev Microbiol, 1, pp. 200-208 Frisvad, J.C., Fungi in cold ecosystems (2008) Psychrophiles: From Biodiversity to Biotechnology, pp. 137-156. , R. Margesin, F. Schinner, J. C. Marx, and C. Gerday (Eds.), Berlin: Springer Gadanho, M., Sampaio, J.P., Cryptococcus ibericus sp. nov., Cryptococcus aciditolerans sp. nov. and Cryptococcus metallitolerans sp. nov., a new ecoclade of anamorphic basidiomycetous yeast species from an extreme environment associated with acid rock drainage in São Domingos pyrite mine, Portugal (2009) Int J Syst Evol Microbiol, 59, pp. 2375-2379 Geok, L.P., Razak, C.A.N., Rahman, R.N.Z.A., Basri, M., Salleh, A.B., Isolation and screening of an extracellular organic solvent-tolerant protease producer (2003) Biochem Eng J, 13, pp. 73-77 Gomes, J., Gomes, I., Steiner, W., Thermolabile xylanase of the Antarctic yeast Cryptococcus adeliae: production and properties (2000) Extremophiles, 4, pp. 227-235 Hall, T.A., Bio Edit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/ 98/NT (1999) Nucl Acids Symp Ser, 41, pp. 95-98 Joseph, B., Ramteke, P.W., Thomas, G., Cold active microbial lipases: some hot issues and recent developments (2008) Biotechnol Adv, 26, pp. 457-470 Knob, A., Carmona, E.C., Xylanase production by Penicillium sclerotiorum and its characterization (2008) World Appl Sci J, 4 (2), pp. 277-283 Kohlmeyer, J., Kohlmeyer, E., (1979) Marine Micology: The Higher Fungi, , New York: Academic Press Kouker, G., Jaeger, K.E., Specific and sensitive plate assay for bacterial lipases (1987) Appl Environ Microbiol, 53, pp. 211-213 Kurtzman, C.P., Fell, J.W., Boekhout, T., Robert, V., Methods for isolation, phenotypic characterization and maintenance of yeasts (2011) The Yeasts: A Taxonomic Study, pp. 88-110. , 5th edn., C. P. Kurtzman, J. W. Fell, and T. Boekhout (Eds.), San Diego: Elsevier Kutty, S.N., Philip, R., Marine yeasts-a review (2008) Yeast, 25, pp. 465-483 Li, J., Chi, Z., Wang, X., Peng, Y., Chi, Z., The selection of alkaline protease-producing yeasts from marine environments and evaluation of their bioactive peptide production (2009) Chin J Oceanol Limnol, 27, pp. 753-761 Margesin, R., Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils (2000) Int Biodeterior Biodegrad, 46, pp. 3-10 Margesin, R., Miteva, V., Diversity and ecology of psychrophilic microorganisms (2011) Res Microbiol, 162, pp. 346-361 Margesin, R., Schinner, F., Marx, J.C., Gerday, C., (2008) Psychrophiles: From bodiversity to biotechnology, pp. 352-360. , (eds), Springer, Berlin, Germany Maria, P.D., Carboni-Oerlemans, C., Tuin, B., Bargeman, G., Meer, A., Gemert, R., Biotechnological applications of Candida antarctica lipase A: state-of-the-art (2005) J Mol Catal B Enzym, 37, pp. 36-46 Miller, G.L., Use of dinitrosalicylic acid reagent for the production of reducing sugars (1959) Anal Chem, 31, pp. 426-620 Ohta, K., Fujimoto, H., Fujii, S., Wakiyama, M., Cell-associated β-xylosidase from Aureobasidium pullulans ATCC 20524: purification, properties, and characterization of the encoding gene (2010) J Biosci Bioeng, 110, pp. 152-157 Onofri, S., Selbmann, L., Hoog, G.S., Grube, M., Barreca, D., Ruisi, S., Zucconi, L., Evolution and adaptation of fungi at boundaries of life (2007) Adv Space Res, 40, pp. 1657-1664 Petrescu, I., Lamotte-Braaseur, J., Chessa, J.P., Ntarima, P., Claeyssens, M., Devreese, B., Marino, G., Gerday, C., Xylanase from the psychrophilic yeast Cryptococcus adeliae (2000) Extremophiles, 4, pp. 137-144 Pointing, S.B., Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi (1999) Fungal Divers, 2, pp. 17-33 Quanfu, W., Yanhua, H., Yu, D., Peisheng, Y., Purification and biochemical characterization of a cold-active lipase from Antarctic sea ice bacteria Pseudoalteromonas sp. NJ 70 (2012) Mol Biol Rep, 39, pp. 9233-9238 Rao, S., Mizutani, O., Hirano, T., Masaki, K., Iefuji, H., Purification and characterization of a novel aspartic protease from basidiomycetous yeast Cryptococcus sp. S-2 (2011) J Biosci Bioeng, 112, pp. 441-446 Ray, M.K., Devi, K.U., Kumar, G.S., Shivaji, S., Extracellular Protease from the Antarctic Yeast Candida humicola (1992) Appl Environ Microbiol, 58, pp. 1918-1923 Richards, T.A., Jones, M.D.M., Leonard, G., Bass, D., Marine fungi: their ecology and molecular diversity (2012) Ann Rev Mar Sci, 4, pp. 495-522 Robinson, C.H., Cold adaptation in Arctic and Antarctic fungi (2001) New Phytol, 151, pp. 341-353 Ruisi, S., Barreca, D., Selbmann, L., Zucconi, L., Onofri, S., Fungi in Antarctica (2007) Rev Environ Sci Bio/Technol, 6, pp. 127-141 Russell, N.J., Cold adaptation of microorganisms (1990) Philos Trans R Soc Lond Ser B, 326, pp. 595-611 Russell, N.J., Cowan, D.A., Handling of psychrophilic microorganisms (2006) Methods in Microbiology, Extremophiles, 35, pp. 371-393. , F. A. Rainey and A. Oren (Eds.), London: Academic Press Shivaji, S., Prasad, G.S., Antarctic yeasts: biodiversity and potential applications (2009) Yeast Biotechnology: Diversity and Applications, pp. 3-18. , T. Satyanarayana and G. Kunze (Eds.), Amsterdam: Springer Siddiqui, K.S., Cavicchioli, R., Cold-adapted enzymes (2006) Annu Rev Biochem, 75, pp. 403-433 Subramaniyan, S., Prema, P., Biotechnology of microbial xylanases: enzymology, molecular biology and application (2002) Crit Rev Biotechnol, 22, pp. 33-46 Tamura, K., Dudley, J., Nei, M., Kumar, S., MEGA 4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 (2007) Mol Biol Evol, 24, pp. 1596-1599 Thompson, J.D., Higgins, D.G., Gibson, T.J., Clustal, W., Improving the sensitivity of progressive multiple alignment through sequence weighting, positions-specific gap penalties and weight matrix choice (1994) Nucleic Acids Res, 22, pp. 4673-4680 Turchetti, B., Buzzini, P., Goretti, M., Branda, E., Diolaiuti, G., D'Agata, C., Smiraglia, C., Vaughan-Martini, A., Psychrophilic yeasts in glacial environments of Alpine glaciers (2008) FEMS Microbiol Ecol, 63, pp. 73-83 Turkiewicz, M., Pazgier, M., Kalinowska, H., Bielecki, S., A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum (2003) Extremophiles, 7, pp. 435-442 Uetake, J., Yoshitaka, Y., Naoko, N., Hiroshi, K., Isolation of oligotrophic yeasts from supraglacial environments of different altitude on the Gulkana Glacier (Alaska) (2012) FEMS Microbiol Ecol, 82, pp. 279-286 Vakhlu, J., Kour, A., Yeast lipases: enzyme purification, biochemical properties and gene cloning (2006) Electron J Biotechnol, 9, pp. 69-85 Vaz, A.B.M., Rosa, L.H., Vieira, M.L., Garcia, V., Brandão, L.R., Teixeira, L.C.R.S., Moliné, M., Rosa, C.A., The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica (2011) Braz J Microbiol, 43, pp. 937-947 Vermelho, A.B., Melo, A.C.N., Sá, M.H.B., Santos, A.L.S., Davila-Levy, C.M., Couri, S., Bon, E., Enzimas Proteolíticas: Aplicações Biotecnológicas (2008) Interciência, Rio De Janeiro, 11, pp. 273-287. , In: Enzimas em Biotecnologia- Produção, Aplicações e Mercado, Ed Vishniac, H.S., Yeast biodiversity in the Antarctic (2006) Biodiversity and Ecophysiology of Yeasts, pp. 221-240. , C. A. Rosa, G. Péter (Eds.), Berlin: Springer Vogel, H.J., A convenient growth medium for Neurospora crassa (1956) Microb Genetics Bull, 13, pp. 42-43 Yang, J., Koga, Y., Nakano, H., Yamane, T., Modifying the chain-length selectivity of the lipase from Burkholderia cepacia KWI-56 through in vitro combinatorial mutagenesis in the substrate-binding site (2002) Protein Eng, 15, pp. 147-152 Yergeau, E., Kowalchuk, G.A., Responses of Antarctic soil microbial communities and associated functions to temperature and freeze-thaw cycle frequency (2008) Environ Microbiol, 10, pp. 2223-2235