dc.creatorZamuner A.R.
dc.creatorCatai A.M.
dc.creatorMartins L.E.B.
dc.creatorSakabe D.I.
dc.creatorDa Silva E.
dc.date2013
dc.date2015-06-25T19:18:39Z
dc.date2015-11-26T15:16:49Z
dc.date2015-06-25T19:18:39Z
dc.date2015-11-26T15:16:49Z
dc.date.accessioned2018-03-28T22:26:34Z
dc.date.available2018-03-28T22:26:34Z
dc.identifier
dc.identifierBrazilian Journal Of Physical Therapy. , v. 17, n. 6, p. 614 - 622, 2013.
dc.identifier14133555
dc.identifier10.1590/S1413-35552012005000129
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84890814297&partnerID=40&md5=d25a57cf1abb37007418de184e738315
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89789
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89789
dc.identifier2-s2.0-84890814297
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1259324
dc.descriptionBackground: The second heart rate (HR) turn point has been extensively studied, however there are few studies determining the first HR turn point. Also, the use of mathematical and statistical models for determining changes in dynamic characteristics of physiological variables during an incremental cardiopulmonary test has been suggested. Objectives: To determine the first turn point by analysis of HR, surface electromyography (sEMG), and carbon dioxide output (VCO2) using two mathematical models and to compare the results to those of the visual method. Method: Ten sedentary middle-aged men (53.9±3.2 years old) were submitted to cardiopulmonary exercise testing on an electromagnetic cycle ergometer until exhaustion. Ventilatory variables, HR, and sEMG of the vastus lateralis were obtained in real time. Three methods were used to determine the first turn point: 1) visual analysis based on loss of parallelism between VCO2 and oxygen uptake (VO2); 2) the linear-linear model, based on fitting the curves to the set of VCO2 data (Lin-LinVCO2); 3) a bi-segmental linear regression of Hinkley's algorithm applied to HR (HMM-HR), VCO2 (HMM-VCO2), and sEMG data (HMM-RMS). Results: There were no differences between workload, HR, and ventilatory variable values at the first ventilatory turn point as determined by the five studied parameters (p>0.05). The Bland-Altman plot showed an even distribution of the visual analysis method with Lin-LinVCO2, HMM-HR, HMM-VCO2, and HMM-RMS. Conclusion: The proposed mathematical models were effective in determining the first turn point since they detected the linear pattern change and the deflection point of VCO2, HR responses, and sEMG.
dc.description17
dc.description6
dc.description614
dc.description622
dc.descriptionWasserman, K., Hansen, J.E., Sue, D., Whipp, B.J., Casaburi, R., (1999) Principles of exercise testing and interpretation, , 3rd ed. Philadelphia: Williams & Wilkins
dc.descriptionSkinner, J.S., McLellan, T.H., The transition from aerobic to anaerobic metabolism (1980) Res Q Exerc Sport., 51, pp. 234-248. , http://dx.doi.org/10.1080/02701367.1980.10609285
dc.descriptionBinder, R.K., Wonisch, M., Corra, U., Cohen-Solal, A., Vanhees, L., Saner, H., Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing (2008) Eur J Cardiovasc Prev Rehabil., 15, pp. 726-734. , http://dx.doi.org/10.1097/HJR.0b013e328304fed4, PMid:19050438
dc.descriptionBeaver, W.L., Wasserman, K., Whipp, B.J., A new method for detecting anaerobic threshold by gas exchange (1986) J Appl Physiol., 60 (6), pp. 2020-2027. , PMid:3087938
dc.descriptionWasserman, K., The anaerobic threshold measurement to evaluate exercise performance (1984) Am Rev Respir Dis., 129, pp. S35-S40. , PMid:6421216
dc.descriptionSoler, A.M., Folledo, M., Martins, L.E.B., Lima-Filho, E.C., Gallo Jr., L., Anaerobic threshold estimation by statistical modelling (1989) Braz J Med Biol Res., 22, pp. 795-797. , PMid:2620195
dc.descriptionCrescêncio, J.C., Martins, L.E., Murta, L.O., Antloga, C.M., Kozuki, R.T., Santos, M.D., Measurement of anaerobic threshold during dynamic exercise in healthy subjects: Comparison among visual analysis and mathematical models (2003) Comput Cardiol., 30, pp. 801-804
dc.descriptionHiga, M.N., Silva, E., Neves, V.F., Catai, A.M., Gallo Jr., L., Silva de Sá, M.F., Comparison of anaerobic threshold determined by visual and mathematical methods in healthy women (2007) Braz J Med Biol Res., 40 (4), pp. 501-508. , http://dx.doi.org/10.1590/S0100-879X2007000400008, PMid:17401493
dc.descriptionHopker, J.G., Jobson, S.A., Pandit, J.J., Controversies in the physiological basis of the 'anaerobic threshold' and their implications for clinical cardiopulmonary exercise testing (2011) Anaesthesia., 66, pp. 111-123. , http://dx.doi.org/10.1111/j.1365-2044.2010.06604.x, PMid:21254986
dc.descriptionConconi, F., Ferrari, M., Ziglio, P.G., Droghetti, P., Codeca, L., Determination of the anaerobic threshold by a noninvasive field test in runners (1982) J Appl Physiol., 52, pp. 869-873. , PMid:7085420
dc.descriptionHofmann, P., Bunc, V., Leitner, H., Pokan, R., Gaisl, G., Heart rate threshold related to lactate turn point and steady-state exercise on a cycle ergometer (1994) Eur J Appl Physiol Occup Physiol., 69, pp. 132-139. , http://dx.doi.org/10.1007/BF00609405, PMid:7805667
dc.descriptionHofmann, P., Von Duvillard, S.P., Seibert, F.J., Pokan, R., Wonisch, M., Lemura, L.M., %HRmax target heart rate is dependent on heart rate performance curve deflection (2001) Med Sci Sports Exerc., 33 (10), pp. 1726-1731. , http://dx.doi.org/10.1097/00005768-200110000-00017, PMid:11581558
dc.descriptionHofmann, P., Wonisch, M., Pokan, R., Schwaberger, G., Smekal, G., Von Duvillard, S.P., Beta1-Adrenoceptor Mediated Origin of the Heart Rate Performance Curve Deflection (2005) Med Sci Sports Exerc., 37 (10), pp. 1704-1709. , http://dx.doi.org/10.1249/01.mss.0000176308.70316.cc, PMid:16260969
dc.descriptionJürimäe, J., Von Duvillard, S.P., Mäestu, J., Cicchella, A., Purge, P., Ruosi, S., Aerobic-anaerobic transition intensity measured via EMG signals in athletes with different physical activity patterns (2007) Eur J Appl Physiol Occup Physiol., 101, pp. 341-346. , http://dx.doi.org/10.1007/s00421-007-0509-5, PMid:17624542
dc.descriptionCandotti, C.T., Loss, J.F., Melo, M.O., La Torre, M., Pasini, M., Dutra, L.A., Comparing the lactate and EMG thresholds of recreational cyclists during incremental pedaling exercise (2008) Can J Physiol Pharmacol., 86 (5), pp. 272-278. , http://dx.doi.org/10.1139/Y08-020, PMid:18432288
dc.descriptionGraef, J.L., Smith, A.E., Kendall, K.L., Walter, A.A., Moon, J.R., Lockwood, C.M., The relationships among endurance performance measures as estimated from VO2PEAK, ventilatory threshold, and electromyographic fatigue threshold: A relationship design (2008) Dyn Med., 7 (15), pp. 1-5. , http://dx.doi.org/10.1186/1476-5918-7-15
dc.descriptionKarlsson, J., Jacobs, I., Onset of blood lactate accumulation during muscular exercise as a threshold concept (1982) Int J Sports Med., 3, pp. 190-201. , http://dx.doi.org/10.1055/s-2008-1026087, PMid:6759424
dc.descriptionAl-Mulla, M.R., Sepulveda, F., Colley, M., A review of non-invasive techniques to detect and predict localized muscle fatigue (2011) Sensors., 11 (4), pp. 3545-3594. , http://dx.doi.org/10.3390/s110403545, PMid:22163810 PMCid:PMC3231314
dc.descriptionHinkley, D.V., Inference about the intersection in two-phase regression (1969) Biometrika., 56 (3), pp. 495-504. , http://dx.doi.org/10.1093/biomet/56.3.495
dc.descriptionSilva, E., Catai, A.M., Trevelin, L.C., Guimarães, J.O., Silva Jr., L.P., Silva, L.M.P., Design of a computerized system to evaluate the cardiac function during dynamic exercise (1994) Phys Med Biol., 33, p. 409
dc.descriptionBasmajian, J.V., De Luca, C.J., (1985) Muscles alive: Their functions revealed by electromyography, , Baltimore: Williams & Wilkins
dc.descriptionJammes, Y., Caquelard, F., Badier, M., Correlation between surface electromyogram, oxygen uptake and blood lactate concentration during dynamic leg exercises (1998) Respir Physiol., 112, pp. 167-174. , http://dx.doi.org/10.1016/S0034-5687(98)00023-1
dc.descriptionBland, J.M., Altman, D.G., Statistical methods for assessing agreement between two methods of clinical measurement (1986) Lancet., 1, pp. 307-310. , http://dx.doi.org/10.1016/S0140-6736(86)90837-8
dc.descriptionLamarra, N., Variables, constants, and parameters: Clarifying the system structure (1990) Med Sci Sports Exerc., 22, pp. 88-95. , http://dx.doi.org/10.1249/00005768-199002000-00014, PMid:2304410
dc.descriptionRosic, G., Pantovic, S., Niciforovic, J., Colovic, V., Rankovic, V., Obradovic, Z., Mathematical analysis of the heart rate performance curve during incremental exercise testing (2011) Acta Physiol Hung., 98 (1), pp. 59-70. , http://dx.doi.org/10.1556/APhysiol.98.2011.1.8, PMid:21388932
dc.descriptionBunc, V., Hofmann, P., Leitner, H., Gaisl, G., Verification of the heart rate threshold (1995) Eur J Appl Physiol., 70, pp. 263-269. , http://dx.doi.org/10.1007/BF00238574
dc.descriptionLucía, A., Vaquero, A.F., Pérez, M., Sánchez, V., Gómez, M.A., Chicharro, J.L., Electromyographic response to exercise in cardiac transplant patients (1997) Chest., 111 (6), pp. 1571-1576. , http://dx.doi.org/10.1378/chest.111.6.1571, PMid:9187176
dc.descriptionGlass, S.C., Knowlton, R.G., Sanjabi, P.B., Sullivan, J.J., Identifying the integrated electromyographic threshold using different muscles during incremental cycling exercise (1998) J Sports Med Phys Fitness., 38 (1), pp. 47-52. , PMid:9638032
dc.descriptionBearden, S.E., Moffatt, R.J., Leg electromyography and the VO2-power relationship during bycicle ergometry (2001) Med Sci Sports Exerc., 33 (7), pp. 1241-1245. , http://dx.doi.org/10.1097/00005768-200107000-00025, PMid:11445775
dc.languageen
dc.publisher
dc.relationBrazilian Journal of Physical Therapy
dc.rightsaberto
dc.sourceScopus
dc.titleIdentification And Agreement Of First Turn Point By Mathematical Analysis Applied To Heart Rate, Carbon Dioxide Output And Electromyography
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución