dc.creatorPalissari R.
dc.creatorGuedes S.
dc.creatorCurvo E.A.C.
dc.creatorMoreira P.A.F.P.
dc.creatorTello C.A.
dc.creatorHadler J.C.
dc.date2013
dc.date2015-06-25T19:18:29Z
dc.date2015-11-26T15:16:38Z
dc.date2015-06-25T19:18:29Z
dc.date2015-11-26T15:16:38Z
dc.date.accessioned2018-03-28T22:26:28Z
dc.date.available2018-03-28T22:26:28Z
dc.identifier
dc.identifierRadiation Measurements. , v. 50, n. , p. 192 - 196, 2013.
dc.identifier13504487
dc.identifier10.1016/j.radmeas.2012.06.004
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84877690391&partnerID=40&md5=8895b73259322922a5f0d8661c87d538
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89752
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89752
dc.identifier2-s2.0-84877690391
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1259301
dc.descriptionOne of the purposes of this study is to give further constraints on the temperature range of the zircon partial annealing zone over a geological time scale using data from borehole zircon samples, which have experienced stable temperatures for ∼1 Ma. In this way, the extrapolation problem is explicitly addressed by fitting the zircon annealing models with geological timescale data. Several empirical model formulations have been proposed to perform these calibrations and have been compared in this work. The basic form proposed for annealing models is the Arrhenius-type model. There are other annealing models, that are based on the same general formulation. These empirical model equations have been preferred due to the great number of phenomena from track formation to chemical etching that are not well understood. However, there are two other models, which try to establish a direct correlation between their parameters and the related phenomena. To compare the response of the different annealing models, thermal indexes, such as closure temperature, total annealing temperature and the partial annealing zone, have been calculated and compared with field evidence. After comparing the different models, it was concluded that the fanning curvilinear models yield the best agreement between predicted index temperatures and field evidence. © 2012 Elsevier Ltd. All rights reserved.
dc.description50
dc.description
dc.description192
dc.description196
dc.descriptionCarlson, W.D., Mechanisms and kinetics of apatite fission-track annealing (1990) Am. Mineral, 75, pp. 1120-1139
dc.descriptionCrowley, K.D., Cameron, M., Shaefer, R.L., Experimental studies of annealing of etched fission tracks in fluor apatite (1991) Geochim. Cosmochim. Acta, 55, pp. 1449-1465
dc.descriptionDodson, M.H., Closure temperature in cool geochronological and petrological systems (1973) Contrib. Mineral Petrol., 40, pp. 259-274
dc.descriptionDuddy, I.R., Green, P.F., Laslett, G.M., Thermal annealing of fission tracks in apatite. 3. Variable temperature behaviour (1988) Chem. Geol., 73, pp. 25-38
dc.descriptionGuedes, S., Hadler, J.C., Iunes, P.J., Tello, C.A., Kinetic model for the relationship between confined fission-track length shortening and fission track age reduction in minerals (2004) Nucl. Instrum. Methods B, 217, pp. 627-636
dc.descriptionGuedes, S., Hadler, J.C., Iunes, P.J., Oliveira, K.M.G., Moreira, P.A.F.P., Tello, C.A., Kinetic model for the annealing of fission tracks in zircon (2005) Radiat. Meas., 40, pp. 517-521
dc.descriptionGuedes, S., Hadler, J.C., Oliveira, K.M.G., Moreira, P.A.F.P., Iunes, P.J., Tello, C.A., Kinetic model for the annealing of fission tracks in minerals and its application to apatite (2006) Radiat. Meas., 41, pp. 392-398
dc.descriptionGuedes, S., Moreira, P.A.F.P., Devanathan, R., Weber, W.J., Hadler, J.C., Improved Fission-track Annealing Model Based on Reevaluation of Annealing Data, , submitted
dc.descriptionHasebe, N., Mori, S., Tagami, T., Matsui, R., Geological partial annealing zone of zircon fission-track system: Additional constraint from the deep drilling MITI-Nischikubi and MITIMishima (2003) Chem. Geol., 199, pp. 45-52
dc.descriptionLaslett, G.M., Green, P.F., Duddy, I.R., Gleadow, J.W.A., Thermal annealing of fission tracks in apatite 2. A quantitative analysis (1987) Chem. Geol. Isot. Geosci. Sect., 65, pp. 1-13
dc.descriptionLaslett, G.M., Galbraith, R.F., Statistical modeling of thermal annealing of fission tracks in apatite (1996) Geochim. Cosmochim. Acta, 60, pp. 5117-5131
dc.descriptionMurakami, M., Yamada, R., Tagami, T., Short-term annealing characteristics of spontaneous fission tracks in zircon: A qualitative description (2006) Chem. Geol. Isot. Geosc. Sect., 227, pp. 214-222
dc.descriptionPalenik, C.S., Nasdala, L., Ewing, R.C., Radiation damage in zircon (2003) Am. Mineral, 88, pp. 770-781
dc.descriptionRahn, M.K., Brandon, M.T., Batt, G.E., Garver, J.I., A zero-damage model for fission-track annealing in zircon (2004) Am. Mineral, 89, pp. 473-484
dc.descriptionTagami, T., Ito, H., Nishimura, S., Thermal annealing characteristics of fission tracks in zircon (1990) Chem. Geol. Isot. Geosci. Sect., 80, pp. 159-169
dc.descriptionTagami, T., Galbraith, R.F., Yamada, R., Laslett, G.M., (1998) Revised Annealing Kinetics of Fission Tracks in Zircon and Geological Implications. Advances in Fission-Track Geochronology, , Kluwer Academic Publishing The Netherlands pp. 99-112
dc.descriptionYamada, R., Tagami, T., Nishimura, S., Ito, H., Annealing kinetics of fission tracks in zircon: An experimental study (1995) Chem. Geol. Isot. Geosci. Sect., 122, pp. 249-258
dc.descriptionYamada, R., Murakami, M., Tagami, T., Statistical modeling of annealing kinetics of fission tracks in zircon
dc.descriptionReassessment of laboratory experiments (2007) Chem. Geol., 236, pp. 75-91
dc.languageen
dc.publisher
dc.relationRadiation Measurements
dc.rightsfechado
dc.sourceScopus
dc.titleExtrapolation Of Zircon Fission-track Annealing Models
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución