dc.creatorBarcellos K.S.A.
dc.creatorBigarella C.L.
dc.creatorWagner M.V.
dc.creatorVieira K.P.
dc.creatorLazarini M.
dc.creatorLangford P.R.
dc.creatorMacHado-Neto J.A.
dc.creatorCall S.G.
dc.creatorStaley D.M.
dc.creatorChung J.Y.
dc.creatorHansen M.D.
dc.creatorSaad S.T.O.
dc.date2013
dc.date2015-06-25T19:18:29Z
dc.date2015-11-26T15:16:30Z
dc.date2015-06-25T19:18:29Z
dc.date2015-11-26T15:16:30Z
dc.date.accessioned2018-03-28T22:26:21Z
dc.date.available2018-03-28T22:26:21Z
dc.identifier
dc.identifierJournal Of Biological Chemistry. , v. 288, n. 4, p. 2179 - 2189, 2013.
dc.identifier219258
dc.identifier10.1074/jbc.M112.432716
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84873859431&partnerID=40&md5=631c6cd82abc25675e5a2e2dc9079484
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89751
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89751
dc.identifier2-s2.0-84873859431
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1259268
dc.descriptionCell-cell adhesions and the cytoskeletons play important and coordinated roles in cell biology, including cell differentiation, development, and migration. Adhesion and cytoskeletal dynamics are regulated by Rho-GTPases. ARHGAP21 is a negative regulator of Rho-GTPases, particularly Cdc42. Here we assess the function ofARHGAP21in cell-cell adhesion, cell migration, and scattering. We find that ARHGAP21 is localized in the nucleus, cytoplasm, or perinuclear region but is transiently redistributed to cell-cell junctions 4 h after initiation of cell-cell adhesion. ARHGAP21 interacts with Cdc42, and decreased Cdc42 activity coincides with the appearance of ARHGAP21 at the cell-cell junctions. Cells lacking ARHGAP21 expression show weaker cell-cell adhesions, increased cell migration, and a diminished ability to undergo hepatocyte growth factor-induced epithelialmesenchymal transition (EMT). In addition, ARHGAP21 interacts with α-tubulin, and it is essential for α-tubulin acetylation in EMT. Our findings indicate that ARHGAP21 is a Rho-GAP involved in cell-cell junction remodeling and that ARHGAP21 affects migration and EMT through α-tubulin interaction and acetylation. © 2013 by The American Society for Biochemistry and Molecular Biology, Inc.
dc.description288
dc.description4
dc.description2179
dc.description2189
dc.descriptionNiessen, C.M., Gottardi, C.J., Molecular components of the adherens junction (2008) Biochim. Biophys. Acta, 1778, pp. 562-571
dc.descriptionArthur, W.T., Noren, N.K., Burridge, K., Regulation of Rho family GTPases by cell-cell and cell-matrix adhesion (2002) Biol. Res., 35, pp. 239-246
dc.descriptionFukata, M., Kaibuchi, K., Rho-family GTPases in cadherinmediated cell-cell adhesion (2001) Nat. Rev. Mol. Cell Biol., 2, pp. 887-897
dc.descriptionKim, S.H., Li, Z., Sacks, D.B., E-cadherin-mediated cell-cell attachment activates Cdc42 (2000) J. Biol. Chem., 275, pp. 36999-37005
dc.descriptionVan Aelst, L., Symons, M., Role of Rho family GTPases in epithelial morphogenesis (2002) Genes Dev., 16, pp. 1032-1054
dc.descriptionKümper, S., Ridley, A.J., P120ctn and P-cadherin but not Ecadherin regulate cell motility and invasion of DU145 prostate cancer cells (2010) PLoS One, 5, pp. e11801
dc.descriptionPerl, A.K., Wilgenbus, P., Dahl, U., Semb, H., Christofori, G., A causal role for E-cadherin in the transition from adenoma to carcinoma (1998) Nature, 392, pp. 190-193
dc.descriptionBagutti, C., Speight, P.M., Watt, F.M., Comparison of integrin, cadherin, and catenin expression in squamous cell carcinomas of the oral cavity (1998) J. Pathol., 186, pp. 8-16
dc.descriptionBeavon, I.R., The E-cadherin-catenin complex in tumour metastasis, Structure, function, and regulation (2000) Eur. J. Cancer, 36, pp. 1607-1620
dc.descriptionShiozaki, H., Iihara, K., Oka, H., Kadowaki, T., Matsui, S., Gofuku, J., Inoue, M., Mori, T., Immunohistochemical detection of α-catenin expression in human cancers (1994) Am. J. Pathol., 144, pp. 667-674
dc.descriptionWatanabe, T., Noritake, J., Kaibuchi, K., Regulation of microtubules in cell migration (2005) Trends Cell Biol., 15, pp. 76-83
dc.descriptionDe Forges, H., Bouissou, A., Perez, F., Interplay between microtubule dynamics and intracellular organization (2012) Int. J. Biochem. Cell Biol., 44, pp. 266-274
dc.descriptionRodriguez, O.C., Schaefer, A.W., Mandato, C.A., Forscher, P., Bement, W.M., Waterman-Storer, C.M., Conserved microtubule-actin interactions in cell movement and morphogenesis (2003) Nat. Cell Biol., 5, pp. 599-609
dc.descriptionGoode, B.L., Drubin, D.G., Barnes, G., Functional cooperation between the microtubule and actin cytoskeletons (2000) Curr. Opin. Cell Biol., 12, pp. 63-71
dc.descriptionRaftopoulou, M., Hall, A., Cell migration (2004) Rho GTPases Lead the Way. Dev. Biol., 265, pp. 23-32
dc.descriptionVasioukhin, V., Bauer, C., Yin, M., Fuchs, E., Directed actin polymerization is the driving force for epithelial cell-cell adhesion (2000) Cell, 100, pp. 209-219
dc.descriptionRaich, W.B., Agbunag, C., Hardin, J., Rapid epithelial-sheet sealing in the Caenorhabditis elegans embryo requires cadherin-dependent filopodial priming (1999) Curr. Biol., 9, pp. 1139-1146
dc.descriptionJacinto, A., Martinez-Arias, A., Martin, P., Mechanisms of epithelial fusion and repair (2001) Nat. Cell Biol., 3, pp. E117-E123
dc.descriptionRidley, A.J., Schwartz, M.A., Burridge, K., Firtel, R.A., Ginsberg, M.H., Borisy, G., Parsons, J.T., Horwitz, A.R., Cell migration. Integrating signals from front to back (2003) Science, 302, pp. 1704-1709
dc.descriptionAznar, S., Lacal, J.C., Rho signals to cell growth and apoptosis (2001) Cancer Lett., 165, pp. 1-10
dc.descriptionMoon, S.Y., Zheng, Y., Rho GTPase-activating proteins in cell regulation (2003) Trends Cell Biol., 13, pp. 13-22
dc.descriptionPeck, J., Douglas IV, G., Wu, C.H., Burbelo, P.D., Human RhoGAP domain-containing proteins. Structure, function and evolutionary relationships (2002) FEBS Lett., 528, pp. 27-34
dc.descriptionSousa, S., Cabanes, D., Archambaud, C., Colland, F., Lemichez, E., Popoff, M., Boisson-Dupuis, S., Cossart, P., ARHGAP10 is necessary for α-catenin recruitment at adherens junctions and for Listeria invasion (2005) Nat. Cell Biol., 7, pp. 954-960
dc.descriptionBassères, D.S., Tizzei, E.V., Duarte, A.A., Costa, F.F., Saad, S.T., ARHGAP10, a novel human gene coding for a potentially cytoskeletal Rho-GTPase activating protein (2002) Biochem. Biophys. Res. Commun., 294, pp. 579-585
dc.descriptionBigarella, C.L., Borges, L., Costa, F.F., Saad, S.T., ARHGAP21 modulates FAK activity and impairs glioblastoma cell migration (2009) Biochim. Biophys. Acta, 1793, pp. 806-816
dc.descriptionDubois, T., Paléotti, O., Mironov, A.A., Fraisier, V., Stradal, T.E., De Matteis, M.A., Franco, M., Chavrier, P., Golgi-localized GAP for Cdc42 functions downstream of ARF1 to control Arp2/3 complex and F-actin dynamics (2005) Nat. Cell Biol., 7, pp. 353-364
dc.descriptionFukata, M., Nakagawa, M., Itoh, N., Kawajiri, A., Yamaga, M., Kuroda, S., Kaibuchi, K., Involvement of IQGAP1, an effector of Rac1 and Cdc42 GTPases, in cell-cell dissociation during cell scattering (2001) Mol. Cell. Biol., 21, pp. 2165-2183
dc.descriptionLivak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCt method (2001) Methods, 25, pp. 402-408
dc.descriptionKim, J.B., Islam, S., Kim, Y.J., Prudoff, R.S., Sass, K.M., Wheelock, M.J., Johnson, K.R., N-cadherin extracellular repeat 4 mediates epithelial to mesenchymal transition and increased motility (2000) J. Cell Biol., 151, pp. 1193-1206
dc.descriptionRen, X.D., Kiosses, W.B., Schwartz, M.A., Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton (1999) EMBO J., 18, pp. 578-585
dc.descriptionSperry, R.B., Bishop, N.H., Bramwell, J.J., Brodeur, M.N., Carter, M.J., Fowler, B.T., Lewis, Z.B., Hansen, M.D., Zyxin controls migration in epithelial-mesenchymal transition by mediating actin-membrane linkages at cell-cell junctions (2010) J Cell Physiol, 222, pp. 612-624
dc.descriptionEl-Bahrawy, M., Talbot, I., Poulsom, R., Alison, M., Variable nuclear localization of α-catenin in colorectal carcinoma (2002) Lab. Invest., 82, pp. 1167-1174
dc.descriptionVan Leenders, G., Van Balken, B., Aalders, T., Hulsbergen-Van De Kaa, C., Ruiter, D., Schalken, J., Intermediate cells in normal and malignant prostate epithelium express c-MET. Implications for prostate cancer invasion (2002) Prostate, 51, pp. 98-107
dc.descriptionLi, J., Zhou, B.P., Activation of α-catenin and Akt pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters (2011) BMC Cancer, 11, p. 49
dc.descriptionHubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M., Yao, T.P., HDAC6 is a microtubuleassociated deacetylase (2002) Nature, 417, pp. 455-458
dc.descriptionKawajiri, A., Itoh, N., Fukata, M., Nakagawa, M., Yamaga, M., Iwamatsu, A., Kaibuchi, K., Identification of a novel α-catenin-interacting protein (2000) Biochem. Biophys. Res. Commun., 273, pp. 712-717
dc.descriptionPollard, T.D., Borisy, G.G., Cellular motility driven by assembly and disassembly of actin filaments (2003) Cell, 112, pp. 453-465
dc.descriptionHartmann, G., Weidner, K.M., Schwarz, H., Birchmeier, W., The motility signal of scatter factor/hepatocyte growth factor mediated through the receptor tyrosine kinase met requires intracellular action of Ras (1994) J. Biol. Chem., 269, pp. 21936-21939
dc.descriptionWynshaw-Boris, A., Elongator bridges tubulin acetylation and neuronal migration (2009) Cell, 136, pp. 393-394
dc.descriptionJanke, C., Bulinski, J.C., Post-translational regulation of the microtubule cytoskeleton Mechanisms and functions (2011) Nat Rev Mol Cell Biol, 12, pp. 773-786
dc.descriptionHammond, J.W., Cai, D., Verhey, K.J., Tubulin modifications and their cellular functions (2008) Curr. Opin. Cell Biol., 20, pp. 71-76
dc.descriptionPerdiz, D., MacKeh, R., Poüs, C., Baillet, A., The ins and outs of tubulin acetylation. More than just a post-translational modification? (2011) Cell. Signal., 23, pp. 763-771
dc.descriptionWang, S., Li, H., Chen, Y., Wei, H., Gao, G.F., Liu, H., Huang, S., Chen, J.L., Transport of influenza virus neuraminidase (NA) to host cell surface is regulated by ARHGAP21 and Cdc42 proteins (2012) J Biol Chem, 287, pp. 9804-9816
dc.descriptionHehnly, H., Longhini, K.M., Chen, J.L., Stamnes, M., Retrograde Shiga toxin trafficking is regulated by ARHGAP21 and Cdc42 (2009) Mol. Biol. Cell, 20, pp. 4303-4312
dc.languageen
dc.publisher
dc.relationJournal of Biological Chemistry
dc.rightsfechado
dc.sourceScopus
dc.titleArhgap21 Protein, A New Partner Of α-tubulin Involved In Cell-cell Adhesion Formation And Essential For Epithelial-mesenchymal Transition
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución