dc.creatorAndrade N.F.
dc.creatorMartinez D.S.T.
dc.creatorPaula A.J.
dc.creatorSilveira J.V.
dc.creatorAlves O.L.
dc.creatorSouza Filho A.G.
dc.date2013
dc.date2015-06-25T19:18:36Z
dc.date2015-11-26T15:16:25Z
dc.date2015-06-25T19:18:36Z
dc.date2015-11-26T15:16:25Z
dc.date.accessioned2018-03-28T22:26:15Z
dc.date.available2018-03-28T22:26:15Z
dc.identifier
dc.identifierJournal Of Nanoparticle Research. , v. 15, n. 7, p. - , 2013.
dc.identifier13880764
dc.identifier10.1007/s11051-013-1761-8
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84878991716&partnerID=40&md5=c58c319650276dc95006aaf4b600577d
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89776
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89776
dc.identifier2-s2.0-84878991716
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1259250
dc.descriptionIn this study, we report an oxidative treatment of multiwalled carbon nanotubes (MWCNTs) by using nitric acid at different temperatures (25-175 C). The analyzed materials have diameters varying from 10 to 40 nm and majority lengths between 3 and 6 μm. The characterization results obtained by different techniques (e.g., field emission scanning electron microscopy, thermogravimetric analysis, energy-filtered transmission electron microscopy, Braunauer, Emmet and Teller method, ζ-potential and confocal Raman spectroscopy) allowed us to access the effects of temperature treatment on the relevant physico-chemical properties of the MWCNTs samples studied in view of an integrated perspective to use these samples in a bio-toxicological context. Analytical microbalance measurements were used to access the purity of samples (metallic residue) after thermogravimetric analysis. Confocal Raman spectroscopy measurements were used to evaluate the density of structural defects created on the surface of the tubes due to the oxidation process by using 2D Raman image. Finally, we have demonstrated that temperature is an important parameter in the generation of oxidation debris (a byproduct which has not been properly taken into account in the literature) in the industrial grade MWCNTs studied after nitric acid purification and functionalization. © 2013 Springer Science+Business Media Dordrecht.
dc.description15
dc.description7
dc.description
dc.description
dc.descriptionAlexander, A.J., Carbon nanotubes structures and compositions: Implications for toxicological studies (2007) Nanotoxicology: Characterization, Dosing and Health Effects, pp. 7-18. , N.A. Monteiro-Riviere C.L. Tran (eds) 1 Eds. Informa Healthcare New York 10.3109/9781420045154-3
dc.descriptionAl-Jamal, K.T., Nunes, A., Methven, L., Ali-Boucetta, H., Li, S.P., Toma, F.M., Herrero, M.A., Kostarelos, K., Degree of chemical functionalization of carbon nanotubes determines tissue distribution and excretion profile (2012) Angew Chem Int Ed, 51 (26), pp. 6389-6393. , 10.1002/anie.201201991 1:CAS:528:DC%2BC38XnsVGltbk%3D
dc.descriptionBelin, T., Epron, F., Characterization methods of carbon nanotubes: A review (2005) Mater Sci Eng B Solid State Mater Adv Technol, 119 (2), pp. 105-118. , 10.1016/j.mseb.2005.02.046
dc.descriptionBerhanu, D., Dybowska, A., Misra, S.K., Stanley, C.J., Ruenraroengsak, P., Boccaccini, A.R., Tetley, T.D., Valsami-Jones, E., Characterisation of carbon nanotubes in the context of toxicity studies (2009) Environ Health, 8 (SUPPL 1), p. 3. , 10.1186/1476-069X-8-S1-S3
dc.descriptionCancado, L.G., Jorio, A., Ferreira, E.H.M., Stavale, F., Achete, C.A., Capaz, R.B., Moutinho, M.V.O., Ferrari, A.C., Quantifying defects in graphene via Raman spectroscopy at different excitation energies (2011) Nano Lett, 11 (8), pp. 3190-3196. , 10.1021/nl201432g 1:CAS:528:DC%2BC3MXotlGhsr0%3D
dc.descriptionCheung, W., Pontoriero, F., Taratula, O., Chen, A.M., He, H., DNA and carbon nanotubes as medicine (2010) Adv Drug Deliv Rev, 62 (6), pp. 633-649. , 10.1016/j.addr.2010.03.007 1:CAS:528:DC%2BC3cXntVelt7g%3D
dc.descriptionCho, J., Boccaccini, A.R., Shaffer, M.S.P., The influence of reagent stoichiometry on the yield and aspect ratio of acid-oxidised injection CVD-grown multi-walled carbon nanotubes (2012) Carbon, 50 (11), pp. 3967-3976. , 10.1016/j.carbon.2012.03.049 1:CAS:528:DC%2BC38XmvFKrt7s%3D
dc.descriptionChun, A.L., Carbon nanotubes: Safe production? (2009) Nature Nanotechnology, , doi: 10.1038/nnano.2009.339
dc.descriptionCrinelli, R., Carloni, E., Menotta, M., Giacomini, E., Bianchi, M., Ambrosi, G., Giorgi, L., Magnani, M., Oxidized ultrashort nanotubes as carbon scaffolds for the construction of cell-penetrating NF-kappaB decoy molecules (2010) ACS Nano, 4 (5), pp. 2791-2803. , 10.1021/nn100057c 1:CAS:528:DC%2BC3cXltVyhtrw%3D
dc.descriptionFarbod, M., Tadavani, S.K., Kiasat, A., Surface oxidation and effect of electric field on dispersion and colloids stability of multiwalled carbon nanotubes (2011) Colloid Surf A, 384 (1-3), pp. 685-690. , 10.1016/j.colsurfa.2011.05.041 1:CAS:528:DC%2BC3MXotlKgtro%3D
dc.descriptionFaria, A.F., Martinez, D.S.T., Moraes, A.C.M., Maia Da Costa, M.E.H., Barros, E.B., Souza Filho, A.G., Alves, O.L., Unveiling the role of oxidation debris on the surface chemistry of graphene through the anchoring of Ag nanoparticles (2012) Chem Mater, 24 (21), pp. 4080-4087. , 10.1021/cm301939s 1:CAS:528:DC%2BC38XhsVWksbrE
dc.descriptionFogden, S., Verdejo, R., Cottam, B., Shaffer, M., Purification of single walled carbon nanotubes: The problem with oxidation debris (2008) Chem Phys Lett, 460 (1-3), pp. 162-167. , 10.1016/j.cplett.2008.05.069 1:CAS:528:DC%2BD1cXovVCmtL0%3D
dc.descriptionFraczek-Szczypta, A., Menaszek, E., Syeda, T.B., Misra, A., Alavijeh, M., Adu, J., Blazewicz, S., Effect of MWCNT surface and chemical modification on in vitro cellular response (2012) J Nanopart Res, 14 (10), p. 1181. , 10.1007/s11051-012-1181-1
dc.descriptionFreiman, S.W., Hooker, S.A., Migler, K.D., Arepalli, S., Measurement issues in single wall carbon nanotubes (2008) National Institute of Standards and Technology, 960 (19), pp. 4-15
dc.descriptionGrobert, N., Carbon nanotubes - becoming clean (2007) Materials Today, 10 (1-2), pp. 28-35. , DOI 10.1016/S1369-7021(06)71789-8, PII S1369702106717898
dc.descriptionGuo, L., Morris, D.G., Liu, X., Vaslet, C., Hurt, R.H., Kane, A.B., Iron bioavailability and redox activity in diverse carbon nanotube samples (2007) Chemistry of Materials, 19 (14), pp. 3472-3478. , DOI 10.1021/cm062691p
dc.descriptionGutierrez-Praena, D., Pichardo, S., Sanchez, E., Grilo, A., Camean, A.M., Jos, A., Influence of carboxylic acid functionalization on the cytotoxic effects induced by single wall carbon nanotubes on human endothelial cells (HUVEC) (2011) Toxicol in Vitro, 25 (8), pp. 1883-1888. , 10.1016/j.tiv.2011.05.027 1:CAS:528:DC%2BC3MXhsVKmt7%2FK
dc.descriptionHeister, E., Lamprecht, C., Neves, V., Tilmaciu, C., Datas, L., Flahaut, E., Soula, B., McFadden, J., Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments (2010) ACS Nano, 4 (5), pp. 2615-2626. , 10.1021/nn100069k 1:CAS:528:DC%2BC3cXksFequro%3D
dc.descriptionHondow, N., Brydson, R., Wang, P., Holton, M.D., Brown, M.R., Rees, P., Summers, H.D., Brown, A., Quantitative characterization of nanoparticle agglomeration within biological media (2012) J Nanopart Res, 14 (977), pp. 1-15
dc.descriptionHull, M.S., Kennedy, A.J., Steevens, J.A., Bednar, A.J., Weiss, C.A., Vikesland, P.J., Release of metal impurities from carbon nanomaterials influences aquatic toxicity (2009) Environ Sci Technol, 43 (11), pp. 4169-4174. , 10.1021/es802483p 1:CAS:528:DC%2BD1MXltlKltLY%3D
dc.descriptionHussain, S.M., Braydich-Stolle, L.K., Schrand, A.M., Murdock, R.C., Yu, K.O., Mattie, D.M., Schlager, J.J., Terrones, M., Toxicity evaluation for safe use of nanomaterials: Recent achievements and technical challenges (2009) Adv Mater, 21 (16), pp. 1549-1559. , 10.1002/adma.200801395 1:CAS:528:DC%2BD1MXltFGiurk%3D
dc.descriptionKitamura, H., Sekido, M., Takeuchi, H., Ohno, M., The method for surface functionalization of single-walled carbon nanotubes with fuming nitric acid (2011) Carbon, 49 (12), pp. 3851-3856. , 10.1016/j.carbon.2011.05.020 1:CAS:528:DC%2BC3MXotlChtbo%3D
dc.descriptionKuempel, E.D., Carbon nanotube risk assessment: Implications for exposure and medical monitoring (2011) J Occup Environ Med, 53 (6 SUPPL), pp. 91-S97. , 1:CAS:528:DC%2BC3MXnt1Ggsr8%3D
dc.descriptionLehman, J.H., Terrones, M., Mansfield, E., Hurst, K.E., Meunier, V., Evaluating the characteristics of multiwall carbon nanotubes (2011) Carbon, 49 (8), pp. 2581-2602. , 10.1016/j.carbon.2011.03.028 1:CAS:528:DC%2BC3MXksFShu7k%3D
dc.descriptionMarques, R.R.N., Machado, B.F., Faria, J.L., Silva, A.M.T., Controlled generation of oxygen functionalities on the surface of single-walled carbon nanotubes by HNO3 hydrothermal oxidation (2010) Carbon, 48 (5), pp. 1515-1523. , 10.1016/j.carbon.2009.12.047 1:CAS:528:DC%2BC3cXhs1KitL8%3D
dc.descriptionMurdock, R.C., Braydich-Stolle, L., Schrand, A.M., Schlager, J.J., Hussain, S.M., Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique (2008) Toxicol Sci, 101 (2), pp. 239-253. , 10.1093/toxsci/kfm240 1:CAS:528:DC%2BD1cXmsV2qsw%3D%3D
dc.descriptionOsswald, S., Havel, M., Gogotsi, Y., Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy (2007) J Raman Spectrosc, 38 (6), pp. 728-736. , 10.1002/jrs.1686 1:CAS:528:DC%2BD2sXntVOntbs%3D
dc.descriptionParadise, M., Goswami, T., Carbon nanotubes - Production and industrial applications (2007) Materials and Design, 28 (5), pp. 1477-1489. , DOI 10.1016/j.matdes.2006.03.008, PII S0261306906000914
dc.descriptionPatlolla, A.K., Hussain, S.M., Schlager, J.J., Patlolla, S., Tchounwou, P.B., Comparative study of the clastogenicity of functionalized and nonfunctionalized multiwalled carbon nanotubes in bone marrow cells of Swiss-Webster mice (2010) Environ Toxicol, 25 (6), pp. 608-621. , 10.1002/tox.20621 1:CAS:528:DC%2BC3cXhsVeqs7jI
dc.descriptionPaula, A.J., Stefani, D., Souza Filho, A.G., Kim, Y.A., Endo, M., Alves, O.L., Surface chemistry in the process of coating mesoporous SiO(2) onto carbon nanotubes driven by the formation of SiOC bonds (2011) Chemistry, 17 (11), pp. 3228-3237. , 10.1002/chem.201002455 1:CAS:528:DC%2BC3MXisFeitLw%3D
dc.descriptionPetersen, E.J., Henry, T.B., Methodological considerations for testing the ecotoxicity of carbon nanotubes and fullerenes: Review (2012) Environ Toxicol Chem, 31 (1), pp. 60-72. , 10.1002/etc.710 1:CAS:528:DC%2BC3MXhs1yktr7N
dc.descriptionPremkumar, T., Mezzenga, R., Geckeler, K.E., Carbon nanotubes in the liquid phase: Addressing the issue of dispersion (2012) Small, 8 (9), pp. 1299-1313. , 10.1002/smll.201101786 1:CAS:528:DC%2BC38XktFyjsbY%3D
dc.descriptionRaffa, V., Ciofania, G., Nitodasb, S., Karachaliosb, T., D'Alessandrod, D., Masinie, M., Cuschieria, A., Can the properties of carbon nanotubes influence their internalization by living cells? (2008) Carbon, 46 (12), pp. 1600-1610. , 10.1016/j.carbon.2008.06.053 1:CAS:528:DC%2BD1cXhtVGkt7fM
dc.descriptionRaffa, V., Ciofani, G., Vittorio, O., Riggio, C., Cuschieri, A., Physicochemical properties affecting cellular uptake of carbon nanotubes (2010) Nanomedicine, 5 (1), pp. 89-97. , 10.2217/nnm.09.95 1:CAS:528:DC%2BD1MXhs1Sjs7%2FJ
dc.descriptionRomanos, G.E., Likodimos, V., Marques, R.R.N., Steriotis, T.A., Papageorgiou, S.K., Faria, J.L., Figueiredo, J.L., Falaras, P., Controlling and quantifying oxygen functionalities on hydrothermally and thermally treated single-wall carbon nanotubes (2011) J Phys Chem C, 115 (17), pp. 8534-8546. , 10.1021/jp200464d 1:CAS:528:DC%2BC3MXks1Glur8%3D
dc.descriptionRosca, I.D., Watari, F., Uo, M., Akasaka, T., Oxidation of multiwalled carbon nanotubes by nitric acid (2005) Carbon, 43 (15), pp. 3124-3131. , DOI 10.1016/j.carbon.2005.06.019, PII S0008622305003593
dc.descriptionRourke, J.P., Pandey, P.A., Moore, J.J., Bates, M., Kinloch, I.A., Young, R.J., Wilson, N.R., The real graphene oxide revealed: Stripping the oxidative debris from the graphene-like sheets (2011) Angew Chem Int Ed, 50 (14), pp. 3173-3177. , 10.1002/anie.201007520 1:CAS:528:DC%2BC3MXjsFyqsro%3D
dc.descriptionSharifi, S., Behzadi, S., Laurent, S., Forrest, M.L., Stroeve, P., Mahmoudi, M., Toxicity of nanomaterials (2012) Chem Soc Rev, 41 (6), pp. 2323-2343. , 10.1039/c1cs15188f 1:CAS:528:DC%2BC38XivFWlsbk%3D
dc.descriptionSingh, R.P., Das, M., Thakare, V., Jain, S., Functionalization density dependent toxicity of oxidized multiwalled carbon nanotubes in a murine macrophage cell line (2012) Chem Res Toxicol, 25 (10), pp. 2127-2137. , 10.1021/tx300228d 1:CAS:528:DC%2BC38XhtlOmur7O
dc.descriptionSmith, B., Wepasnick, K., Schrote, K.E., Bertele, A.H., Ball, W.P., O'Melia, C., Fairbrother, D.H., Colloidal properties of aqueous suspensions of acid-treated, multi-walled carbon nanotubes (2009) Environ Sci Technol, 43 (3), pp. 819-825. , 10.1021/es802011e 1:CAS:528:DC%2BD1cXhsFCltL7M
dc.descriptionStefani, D., Paula, A.J., Vaz, B.G., Silva, R.A., Andrade, N.F., Justo, G.Z., Ferreira, C.V., Alves, O.L., Structural and proactive safety aspects of oxidation debris from multiwalled carbon nanotubes (2011) J Hazard Mater, 189 (1-2), pp. 391-396. , 10.1016/j.jhazmat.2011.02.050 1:CAS:528:DC%2BC3MXksVelsL0%3D
dc.descriptionTan, C.W., Tan, K.H., Ong, Y.T., Mohamed, A.R., Zein, S.H.S., Tan, S.H., Energy and environmental applications of carbon nanotubes (2012) Environ Chem Lett, 10 (3), pp. 265-273. , 10.1007/s10311-012-0356-4 1:CAS:528:DC%2BC38XhtF2gtLvM
dc.descriptionTobias, G., Shao, L.D., Ballesteros, B., Green, M.L.H., Enhanced sidewall functionalization of single-wall carbon nanotubes using nitric acid (2009) J Nanosci Nanotechnol, 9 (10), pp. 6072-6077. , 10.1166/jnn.2009.1567 1:CAS:528:DC%2BD1MXht1yrtrvO
dc.descriptionTripathi, S., Sonkar, S.K., Sarkar, S., Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes (2011) Nanoscale, 3 (3), pp. 1176-1181. , 10.1039/c0nr00722f 1:CAS:528:DC%2BC3MXjtlSgtLg%3D
dc.descriptionVardharajula, S., Ali, S.Z., Tiwari, P.M., Eroglu, E., Vig, K., Dennis, V.A., Singh, S.R., Functionalized carbon nanotubes: Biomedical applications (2012) Int J Nanomed, 7, pp. 5361-5374. , 1:CAS:528:DC%2BC38XhsFylu7zI
dc.descriptionVerdejo, R., Lamoriniere, S., Cottam, B., Bismarck, A., Shaffer, M., Removal of oxidation debris from multi-walled carbon nanotubes (2007) Chemical Communications, (5), pp. 513-515. , DOI 10.1039/b611930a
dc.descriptionVillagarcia, H., Dervishi, E., De Silva, K., Biris, A.S., Khodakovskaya, M.V., Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants (2012) Small, 8 (15), pp. 2328-2334. , 10.1002/smll.201102661 1:CAS:528:DC%2BC38Xls1egtrk%3D
dc.descriptionWang, Z., Korobeinyk, A., Whitby, R.L.D., Meikle, S.T., Mikhalovsky, S.V., Acquah, S.F.A., Kroto, H.W., Direct confirmation that carbon nanotubes still react covalently after removal of acid-oxidative lattice fragments (2010) Carbon, 48 (3), pp. 916-918. , 10.1016/j.carbon.2009.10.025 1:CAS:528:DC%2BD1MXhsFGnu7fP
dc.descriptionWarheit, D.B., How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? (2008) Toxicol Sci, 101 (2), pp. 183-185. , 10.1093/toxsci/kfm279 1:CAS:528:DC%2BD1cXmsV2ruw%3D%3D
dc.descriptionWick, P., Manser, P., Limbach, L.K., Dettlaff-Weglikowska, U., Krumeich, F., Roth, S., Stark, W.J., Bruinink, A., The degree and kind of agglomeration affect carbon nanotube cytotoxicity (2007) Toxicology Letters, 168 (2), pp. 121-131. , DOI 10.1016/j.toxlet.2006.08.019, PII S0378427406013397
dc.descriptionWorsley, K.A., Kalinina, I., Bekyarova, E., Haddon, R.C., Functionalization and dissolution of nitric acid treated single-walled carbon nanotubes (2009) J Am Chem Soc, 131 (50), pp. 18153-18158. , 10.1021/ja906267g 1:CAS:528:DC%2BD1MXhsValtbnJ
dc.descriptionWu, W.H., Chen, W., Lin, D.H., Yang, K., Influence of surface oxidation of multiwalled carbon nanotubes on the adsorption affinity and capacity of polar and nonpolar organic compounds in aqueous phase (2012) Environ Sci Technol, 46 (10), pp. 5446-5454. , 10.1021/es3004848 1:CAS:528:DC%2BC38XlvV2ksrs%3D
dc.descriptionYu, H., Jin, Y.G., Peng, F., Wang, H.J., Yang, J., Kinetically controlled side-wall functionalization of carbon nanotubes by nitric acid oxidation (2008) J Phys Chem C, 112 (17), pp. 6758-6763. , 10.1021/jp711975a 1:CAS:528:DC%2BD1cXksVSgsbk%3D
dc.languageen
dc.publisher
dc.relationJournal of Nanoparticle Research
dc.rightsfechado
dc.sourceScopus
dc.titleTemperature Effects On The Nitric Acid Oxidation Of Industrial Grade Multiwalled Carbon Nanotubes
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución