dc.creatorBraga A.R.C.
dc.creatorManera A.P.
dc.creatorOres J.C.
dc.creatorSala L.
dc.creatorMaugeri F.
dc.creatorKalil S.J.
dc.date2013
dc.date2015-06-25T19:18:27Z
dc.date2015-11-26T15:16:21Z
dc.date2015-06-25T19:18:27Z
dc.date2015-11-26T15:16:21Z
dc.date.accessioned2018-03-28T22:26:11Z
dc.date.available2018-03-28T22:26:11Z
dc.identifier
dc.identifierFood Technology And Biotechnology. , v. 51, n. 1, p. 45 - 52, 2013.
dc.identifier13309862
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84877806979&partnerID=40&md5=3f679eea6acab591580718c1eb06931a
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89744
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89744
dc.identifier2-s2.0-84877806979
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1259235
dc.descriptionβ-Galactosidase is an enzyme that catalyzes the hydrolysis of lactose. It has potential importance due to various applications in the food and dairy industries, involving lactose-reduced ingredients. The properties of two b-galactosidase enzymes, crude and purified, from different sources, Kluyveromyces marxianus CCT 7082 and Kluyveromyces marxianus ATCC 16045, were analyzed. The pH and temperature optima, deactivation energy, thermal stability and kinetic and thermodynamic parameters were determined, as well as the ability to hydrolyze lactose and produce galactooligosaccharides. Purification process improved the properties of the enzymes, and the results showed that purified enzymes from both strains had a higher optimum temperature, and lower values of Km, thus showing greater affinity for o-nitrophenyl-b-D-galactopiranoside than the crude enzymes. The production of galactooligosaccharides was also greater when using purified enzymes, increasing the synthesis by more than 30 % by both strains.
dc.description51
dc.description1
dc.description45
dc.description52
dc.descriptionGekas, V., López-Leiva, M., Hydrolysis of lactose: A literature review (1985) Process Biochem., 20, pp. 1-12
dc.descriptionBraga, A.R.C., Gomes, P.A., Kalil, S.J., Formulation of culture medium with agroindustrial waste for b-galactosidase production from Kluyveromyces marxianus ATCC 16045 (2012) Food Bioprocess Technol., 5, pp. 1653-1663
dc.descriptionMahoney, R.R., Galactosyl-oligosaccharide formation during lactose hydrolysis: A review (1998) Food Chem., 63, pp. 147-154
dc.descriptionSako, T., Matsumoto, K., Tanaka, R., Recent progress on research and applications of non-digestible galacto-oligosaccharides (1999) Int. Dairy J., 9, pp. 69-80
dc.descriptionSears, P., Wong, C.H., Toward automated synthesis of oligosaccharides and glycoproteins (2001) Science,, 291, pp. 2344-2350
dc.descriptionLadero, M., Santos, A., García-Ochoa, F., Kinetic modeling of lactose hydrolysis with an immobilized b-galactosidase from Kluyveromyces fragilis (2000) Enzyme Microbial Technol., 27, pp. 583-592
dc.descriptionSzczodrak, J., Hydrolysis of lactose in whey permeate by immobilized b-galactosidase from Kluyveromyces fragilis (2000) J. Mol. Catal. B: Enzym., 10, pp. 631-637
dc.descriptionJurado, E., Camacho, F., Luzon, G., Vicaria, J.M., Kinetic models of activity for b-galactosidases: Influence of pH, ionic concentration and temperature (2004) Enzyme Microbial Technol., 34, pp. 33-40
dc.descriptionUstok, F.I., Tari, C., Harsa, S., Biochemical and thermal properties of b-galactosidase enzymes produced by artisanal yoghurt cultures (2010) Food Chem., 119, pp. 1114-1120
dc.descriptionManera, A.P., Ores, J.C., Ribeiro, V.A., Burkert, C.A.V., Kalil, S.J., Optimization of the culture medium for the production of b-galactosidase from Kluyveromyces marxianus CCT 7082 (2008) Food Technol. Biotechnol., 46, pp. 66-72
dc.descriptionPinheiro, R., Belo, I., Mota, M., Growth and b-galactosidase activity in cultures of Kluyveromyces marxianus under increased air pressure (2003) Lett. Appl. Microbiol., 37, pp. 438-442
dc.descriptionLukondeh, T., Ashbolt, N.J., Rogers, P.L., Fed-batch fermentation for production of Kluyveromyces marxianus FII 510700 cultivated on a lactose-based medium (2005) J. Ind. Microbiol. Biotechnol., 32, pp. 284-288
dc.descriptionde Medeiros, F.O., Burkert, C.A.V., Kalil, S.J., Purification of b-galactosidase by ion exchange chromatography: A study of the elution using an experimental design (2012) Chem. Eng. Technol., 35, pp. 911-918
dc.descriptionde Medeiros, F.O., Alves, F.G., Lisboa, C.R., de Souza Martins, D., Burkert, C.A.V., Kalil, S.J., Ultrasonic waves and glass pearls: A new method of extraction of b-galactosidase for use in laboratory (2008) Quimica Nova,, 31, pp. 336-339. , in Portuguese
dc.descriptionWhitaker, J.R., (1994) Principles of Enzymology for the Food Sciences, , Marcel Dekker, New York, NY, USA
dc.descriptionInchaurrondo, V.A., Yantorno, O.M., Voget, C.E., Yeast growth and b-galactosidase production during aerobic batch cultures in lactose-limited synthetic medium (1994) Process Biochem., 29, pp. 47-54
dc.descriptionManera, A.P., Costa, F.A.A., Rodrigues, M.I., Kalil, S.J., Maugeri Filho, F., Galacto-oligosaccharides production using permeabilized cells of Kluyveromyces marxianus (2010) Int. J. Food Eng., 6, pp. 1-15
dc.descriptionBrady, D., Marchant, R., McHale, L., McHale, A.P., Isolation and partial characterization of b-galactosidase activity produced by a thermotolerant strain of Kluyveromyces marxianus during growth on lactose-containing media (1995) Enzyme Microbial Technol., 17, pp. 696-699
dc.descriptionLai, L.S., Chang, P.C., Chang, C.T., Isolation and characterization of superoxide dismutase from wheat seedlings (2008) J. Agric. Food Chem., 56, pp. 8121-8129
dc.descriptionAlcántara, A.R., Borreguero, I., López-Belmonte, M.T., Sinisterra, J.V., Covalent Immobilization of Crude and Partially-Purified Lipases onto Inorganic Supports: Stability and Hyperactivation (1998) Progress in Biotechnology, pp. 571-576. , Elsevier Science B.V., Amsterdam, The Netherlands , A. Ballesteros, F.J. Plou, J.L. Iborra, P.J. Hailing (Eds.)
dc.descriptionNaidu, G.S.N., Panda, T., Studies on pH and thermal inactivation of pectolytic enzymes from Aspergillus niger (2003) Biochem. Eng. J., 16, pp. 57-67
dc.descriptionOrtega, N., de Diego, S., Perez-Mateos, M., Busto, M.D., Kinetic properties and thermal behaviour of polygalacturonase used in fruit juice clarification (2004) Food Chem., 88, pp. 209-217
dc.descriptionPace, C.N., Contribution of the hydrophobic effect to globular protein stability (1992) J. Mol. Biol., 226, pp. 29-35
dc.descriptionBusto, M.D., Owusu Apenten, R.K., Robinson, D.S., Wu, Z., Casey, R., Hughes, R.K., Kinetics of thermal inactivation of pea seed lipoxygenases and the effect of additives on their thermostability (1999) Food Chem., 65, pp. 323-329
dc.descriptionBrown, E.D., Yada, R.Y., A kinetic and equilibrium study of the denaturation of aspartic proteinases from fungi (1991) Endothia parasitica and Mucor miehei, Biochim. Biophys. Acta,, 1076, pp. 406-415
dc.descriptionCobos, E., Estrada, P., Effect of polyhydroxylic cosolvents on the thermostability and activity of xylanase from Trichoderma reesei QM 9414 (2003) Enzyme Microbial Technol., 33, pp. 810-818
dc.descriptionShuler, M.L., Kargi, F., (2002) Bioprocess Engineering: Basic Concepts, , Prentice Hall, Upper Saddle River, NJ, USA
dc.descriptionZhou, Q.Z.K., Chen, X.D., Effects of temperature and pH on the catalytic activity of the immobilized b-galactosidase from Kluyveromyces lactis (2001) Biochem. Eng. J., 9, pp. 33-44
dc.descriptionNagy, Z., Kiss, T., Szentirmai, A., Biro, S., b-Galactosidase of Penicillium chrysogenum: Production (2001) purification, and characterization of the enzyme, Protein Expres. Purif., 21, pp. 24-29
dc.languageen
dc.publisher
dc.relationFood Technology and Biotechnology
dc.rightsfechado
dc.sourceScopus
dc.titleKinetics And Thermal Properties Of Crude And Purified β-galactosidase With Potential For The Production Of Galactooligosaccharides
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución