dc.creatorReal F.
dc.creatorVidal R.O.
dc.creatorCarazzolle M.F.
dc.creatorMondego J.M.C.
dc.creatorCosta G.G.L.
dc.creatorHerai R.H.
dc.creatorWurtele M.
dc.creatorDe Carvalho L.M.
dc.creatorE Ferreira R.C.
dc.creatorMortara R.A.
dc.creatorBarbieri C.L.
dc.creatorMieczkowski P.
dc.creatorDa Silveira J.F.
dc.creatorBriones M.R.D.S.
dc.creatorPereira G.A.G.
dc.creatorBahia D.
dc.date2013
dc.date2015-06-25T19:18:27Z
dc.date2015-11-26T15:16:20Z
dc.date2015-06-25T19:18:27Z
dc.date2015-11-26T15:16:20Z
dc.date.accessioned2018-03-28T22:26:11Z
dc.date.available2018-03-28T22:26:11Z
dc.identifier
dc.identifierDna Research. , v. 20, n. 6, p. 567 - 581, 2013.
dc.identifier13402838
dc.identifier10.1093/dnares/dst031
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84890466311&partnerID=40&md5=6abf5746ec1b22aafde31069c07f56eb
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89746
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89746
dc.identifier2-s2.0-84890466311
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1259233
dc.descriptionWe present the sequencing and annotation of the Leishmania (Leishmania) amazonensis genome, an etiological agent of human cutaneous leishmaniasis in the Amazon region of Brazil. L. (L.) amazonensis shares features with Leishmania (L.) mexicana but also exhibits unique characteristics regarding geographical distribution and clinical manifestations of cutaneous lesions (e.g. borderline disseminated cutaneous leishmaniasis). Predicted genes were scored for orthologous gene families and conserved domains in comparison with other human pathogenic Leishmania spp. Carboxypeptidase, aminotransferase, and 3′-nucleotidase genes and ATPase, thioredoxin, and chaperone-related domains were represented more abundantly in L. (L.) amazonensis and L. (L.) mexicana species. Phylogenetic analysis revealed that these two species share groups of amastin surface proteins unique to the genus that could be related to specific features of disease outcomes and host cell interactions. Additionally, we describe a hypothetical hybrid interactome of potentially secreted L. (L.) amazonensis proteins and host proteins under the assumption that parasite factors mimic their mammalian counterparts. The model predicts an interaction between an L. (L.) amazonensis heat-shock protein and mammalian Toll-like receptor 9, which is implicated in important immune responses such as cytokine and nitric oxide production. The analysis presented here represents valuable information for future studies of leishmaniasis pathogenicity and treatment. © The Author 2013.
dc.description20
dc.description6
dc.description567
dc.description581
dc.description(2010) Control of the Leishmaniasis WHOTechnical Report Series, , WHO. WHO Press: Geneva
dc.descriptionLainson, R., Shaw, J.J., (1987) The leishmaniases in biology and medicine. Evolution, classification and geographical distribution
dc.descriptionBates, P.A., Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies (2007) Int. J. Parasitol., 37, pp. 1097-1106
dc.descriptionDedet, J.P., Pratlong, F., Lanotte, G., Ravel, C., Cutaneous leishmaniasis The parasite (1999) Clin. Dermatol., 17, pp. 261-268
dc.descriptionMurray, H.W., Berman, J.D., Davies, C.R., Saravia, N.G., Advances in leishmaniasis (2005) Lancet, 366, pp. 1561-1577
dc.descriptionCamara Coelho, L.I., Paes, M., Guerra, J.A., Characterization of Leishmania spp causing cutaneous leishmaniasis in Manaus, Amazonas, Brazil (2011) Parasitol. Res., 108, pp. 671-677
dc.descriptionSilveira, F.T., Lainson, R., Corbett, C.E., Further observations on clinical, histopathological, and immunological features of borderline disseminated cutaneous leishmaniasis caused by Leishmania (Leishmania) amazonensis (2005) Mem Inst Oswaldo Cruz, 100, pp. 525-534
dc.descriptionReal, F., Mortara, R.A., The diverse and dynamic nature of Leishmania parasitophorous vacuoles studied by multidimensional imaging (2012) PLoS Negl. Trop. Dis., 6, pp. e1518
dc.descriptionReal, F., Pouchelet, M., Rabinovitch, M., Leishmania (L) amazonensis: Fusion between parasitophorous vacuoles in infected bone-marrow derived mousemacrophages (2008) Exp Parasitol., 119, pp. 15-23
dc.descriptionAlpuche-Aranda, C.M., Racoosin, E.L., Swanson, J.A., Miller, S.I., Salmonella stimulate macrophage macropinocytosis and persist within spacious phagosomes (1994) J. Exp. Med., 179, pp. 601-608
dc.descriptionReal, F., Mortara, R.A., Rabinovitch, M., Fusion between Leishmania amazonensis and Leishmania major parasitophorous vacuoles: Live imaging of coinfected macrophages (2010) PLoS Negl. Trop. Dis., 4, pp. e905
dc.descriptionNdjamen, B., Kang, B.H., Hatsuzawa, K., Kima, P.E., Leishmania parasitophorous vacuoles interact continuously with the host cell's endoplasmic reticulum
dc.descriptionparasitophorous vacuoles are hybrid compartments (2010) Cell Microbiol., 12, pp. 1480-1494
dc.descriptionClayton, C., Shapira, M., Post-Transcriptional regulation of gene expression in trypanosomes and leishmanias (2007) Mol. Biochem. Parasitol., 156, pp. 93-101
dc.descriptionMartinez-Calvillo, S., Yan, S., Nguyen, D., Fox, M., Stuart, K., Myler, P.J., Transcription of Leishmania major Friedlin chromosome 1 initiates in both directions within a single region (2003) Mol. Cell, 11, pp. 1291-1299
dc.descriptionHaile, S., Papadopoulou, B., Developmental regulation of gene expression in trypanosomatid parasitic protozoa (2007) Curr. Opin. Microbiol., 10, pp. 569-577
dc.descriptionMartinez-Calvillo, S., Vizuet-de-Rueda, J.C., Florencio- Martinez, L.E., Manning-Cela, R.G., Figueroa-Angulo, E.E., Gene expression in trypanosomatid parasites (2010) J. Biomed. Biotechnol., 2010, p. 525241
dc.descriptionWincker, P., Ravel, C., Blaineau, C., The Leishmania genome comprises 36 chromosomes conserved across widely divergent human pathogenic species (1996) Nucleic Acids Res., 24, pp. 1688-1694
dc.descriptionBritto, C., Ravel, C., Bastien, P., Conserved linkage groups associated with large-scale chromosomal rearrangements between Old World and New World Leishmania genomes (1998) Gene, 222, pp. 107-117
dc.descriptionPeacock, C.S., Seeger, K., Harris, D., Comparative genomic analysis of three Leishmania species that cause diverse human disease (2007) Nat. Genet., 39, pp. 839-847
dc.descriptionRaymond, F., Boisvert, S., Roy, G., Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species (2012) Nucleic Acids Res., 40, pp. 1131-1147
dc.descriptionRovai, L., Tripp, C., Stuart, K., Simpson, L., Recurrent polymorphisms in small chromosomes of Leishmania tarentolae after nutrient stress or subcloning (1992) Mol. Biochem. Parasitol., 50, pp. 115-125
dc.descriptionIvens, A.C., Peacock, C.S., Worthey, E.A., The genome of the kinetoplastid parasite Leishmania major (2005) Science, 309, pp. 436-442
dc.descriptionDowning, T., Imamura, H., Decuypere, S., Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance (2011) Genome Res., 21, pp. 2143-2156
dc.descriptionRogers, M.B., Hilley, J.D., Dickens, N.J., Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania (2011) Genome Res., 21, pp. 2129-2142
dc.descriptionSmith, D.F., Peacock, C.S., Cruz, A.K., Comparative genomics: Fromgenotype to disease phenotype in the leishmaniases (2007) Int. J. Parasitol., 37, pp. 1173-1186
dc.descriptionLye, L.F., Owens, K., Shi, H., Retention and loss of RNA interference pathways in trypanosomatid protozoans (2010) PLoS Pathog., 6, pp. e1001161
dc.descriptionMessing, J., Crea, R., Seeburg, P.H., A system for shotgun DNA sequencing (1981) Nucleic Acids Res., 9, pp. 309-321
dc.descriptionZerbino, D.R., Birney, E., Velvet: Algorithms for de novo short read assembly using de Bruijn graphs (2008) Genome Res., 18, pp. 821-829
dc.descriptionQuinn, N.L., Levenkova, N., Chow, W., Assessing the feasibility of GS FLX Pyrosequencing for sequencing the Atlantic salmon genome (2008) BMC Genomics, 9, p. 404
dc.descriptionSommer, D.D., Delcher, A.L., Salzberg, S.L., Pop, M., Minimus: A fast, lightweight genome assembler BMC Bioinformatics, 8, p. 64
dc.descriptionPop, M., Kosack, D.S., Salzberg, S.L., Hierarchical scaffolding with Bambus (2004) Genome Res., 14, pp. 149-159
dc.descriptionSlater, G.S., Birney, E., Automated generation of heuristics for biological sequence comparison (2005) BMC Bioinformatics, 6, p. 31
dc.descriptionSalzberg, S.L., Delcher, A.L., Kasif, S., White, O., Microbial gene identification using interpolated Markov models (1998) Nucleic Acids Res., 26, pp. 544-548
dc.descriptionLomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y.O., Borodovsky, M., Gene identification in novel eukaryotic genomes by self-Training algorithm (2005) Nucleic Acids Res., 33, pp. 6494-6506
dc.descriptionHaas, B.J., Salzberg, S.L., Zhu, W., Automated eukaryotic gene structure annotation using EVidence Modeler and the program to assemble spliced alignments (2008) Genome Biol., 9, pp. R7
dc.descriptionKoski, L.B., Gray, M.W., Lang, B.F., Burger, G., AutoFACT: An automatic functional annotation and classification tool (2005) BMC Bioinformatics, 6, p. 151
dc.descriptionSuzek, B.E., Huang, H., McGarvey, P., Mazumder, R., Wu, C.H., UniRef: Comprehensive and non-redundant UniProt reference clusters (2007) Bioinformatics, 23, pp. 1282-1288
dc.descriptionMarchler-Bauer, A., Bryant, S.H., CD-Search: Protein domain annotations on the fly (2004) Nucleic Acids Res., 32, pp. W327-W331
dc.descriptionBateman, A., Birney, E., Cerruti, L., The Pfam protein families database (2002) Nucleic Acids Res., 30, pp. 276-280
dc.descriptionKanehisa, M., Goto, S., KEGG: Kyoto encyclopedia of genes and genomes (2000) Nucleic Acids Res., 28, pp. 27-30
dc.descriptionChen, F., Mackey, A.J., Stoeckert, C.J., Jrand Roos, D.S., OrthoMCL-DB: Querying a comprehensive multi-species collection of ortholog groups (2006) Nucleic Acids Res., 34, pp. D363-D368
dc.descriptionChen, F., Mackey, A.J., Vermunt, J.K., Roos, D.S., Assessing performance of orthology detection strategies applied to eukaryotic genomes (2007) PLoS One, 2, pp. e383
dc.descriptionQuinlan, A.R., Hall, I.M., BEDTools: A flexible suite of utilities for comparing genomic features (2010) Bioinformatics, 26, pp. 841-842
dc.descriptionSharp, P.M., Li, W.H., The codon adaptation index - A measure of directional synonymous codon usage bias, and its potential applications (1987) Nucleic Acids Res., 15, pp. 1281-1295
dc.descriptionSharp, P.M., Tuohy, T.M., Mosurski, K.R., Codon usage in yeast: Cluster analysis clearly differentiates highly and lowly expressed genes (1986) Nucleic Acids Res., 14, pp. 5125-5143
dc.descriptionComeron, J.M., Aguade, M., An evaluation of measures of synonymous codon usage bias (1998) J. Mol. Evol., 47, pp. 268-274
dc.descriptionAslett, M., Aurrecoechea, C., Berriman, M., TriTrypDB: A functional genomic resource for the Trypanosomatidae (2010) Nucleic Acids Res., 38, pp. D457-D462
dc.descriptionDrummond, A.J., Ashton, B., Buxton, S., (2011) Geneious v5.6.3., , http://www.geneious.com/, (June 2012, date last accessed)
dc.descriptionEdgar, R.C., MUSCLE: Multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res., 32, pp. 1792-1797
dc.descriptionRonquist, F., Huelsenbeck, J.P., MrBayes 3: Bayesian phylogenetic inference under mixed models (2003) Bioinformatics, 19, pp. 1572-1574
dc.descriptionWhelan, S., Goldman, N., A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach (2001) Mol. Biol. Evol., 18, pp. 691-699
dc.descriptionEmanuelsson, O., Brunak, S., Von Heijne, G., Nielsen, H., Locating proteins in the cell using TargetP SignalP and related tools Nat. Protoc., 2, pp. 953-971
dc.descriptionBendtsen, J.D., Jensen, L.J., Blom, N., Von Heijne, G., Brunak, S., Feature-based prediction of nonclassical and leaderless protein secretion (2004) Protein Eng Des Sel: PEDS, 17, pp. 349-356
dc.descriptionPaape, D., Barrios-Llerena, M.E., Le Bihan, T., Mackay, L., Aebischer, T., Gel free analysis of the proteome of intracellular Leishmania mexicana (2010) Mol. Biochem. Parasitol., 169, pp. 108-114
dc.descriptionLowe, T.M., Eddy, S.R., TRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence (1997) Nucleic Acids Res., 25, pp. 955-964
dc.descriptionCastillo-Ramirez, S., Vazquez-Castellanos, J.F., Gonzalez, V., Cevallos, M.A., Horizontal gene transfer and diverse functional constrains within a common replication- partitioning system in Alphaproteobacteria: The repABC operon (2009) BMC Genomics, 10, p. 536
dc.descriptionBastien, P., Blaineau, C., Pages, M., Leishmania: Sex, lies and karyotype (1992) Parasitol. Today, 8, pp. 174-177
dc.descriptionMannaert, A., Downing, T., Imamura, H., Dujardin, J.C., Adaptivemechanisms in pathogens: Universal aneuploidy in Leishmania (2012) Trends Parasitol., 28, pp. 370-376
dc.descriptionSterkers, Y., Lachaud, L., Bourgeois, N., Crobu, L., Bastien, P., Pages, M., Novel insights intogenomeplasticity in Eukaryotes: Mosaic aneuploidy in Leishmania (2012) Mol. Microbiol., 86, pp. 15-23
dc.descriptionNing, Z., Cox, A.J., Mullikin, J.C., SSAHA: A fast search method for large DNA databases (2001) Genome Res., 11, pp. 1725-1729
dc.descriptionGentil, L.G., Lasakosvitsch, F., Silveira, J.F., Santos, M.R., Barbieri, C.L., Analysis and chromosomal mapping of Leishmania (Leishmania) amazonensis amastigote expressed sequence tags (2007) Mem Inst Oswaldo Cruz, 102, pp. 707-711
dc.descriptionHutson, S., Structure and function of branched chain aminotransferases (2001) Prog Nucleic Acid Res. Mol. Biol., 70, pp. 175-206
dc.descriptionGinger, M.L., Chance, M.L., Goad, L.J., Elucidation of carbon sources used for the biosynthesis of fatty acids and sterols in the trypanosomatid Leishmania mexicana (1999) Biochem. J., 342, pp. 397-405
dc.descriptionArruda, D.C., D'Alexandri, F.L., Katzin, A.M., Uliana, S.R., Leishmania amazonensis: Biosynthesis of polyprenols of 9 isoprene units by amastigotes Exp. Parasitol., 118, pp. 624-628
dc.descriptionNeubert, T.A., Gottlieb, M., An inducible 30- nucleotidase/nuclease from the trypanosomatid Crithidia luciliae Purification and characterization (1990) J. Biol. Chem., 265, pp. 7236-7242
dc.descriptionPaletta-Silva, R., Vieira, D.P., Vieira-Bernardo, R., Leishmania amazonensis: Characterization of an ecto-30-nucleotidase activity and its possible role in virulence (2011) Exp Parasitol., 129, pp. 277-283
dc.descriptionHolmgren, A., Lu., J., Thioredoxin and thioredoxin reductase: Current research with special reference to human disease, Biochem (2010) Biophys. Res. Commun., 396, pp. 120-124
dc.descriptionScott, P., Sher, A., A spectrum in the susceptibility of leishmanial strains to intracellular killing by murine macrophages (1986) J. Immunol., 136, pp. 1461-1466
dc.descriptionKrauth-Siegel, R.L., Comini, M.A., Redox control in trypanosomatids, parasitic protozoa with trypanothione- based thiol metabolism (2008) Biochim Biophys. Acta, 1780, pp. 1236-1248
dc.descriptionDe Souza Carmo, E.V., Katz, S., Barbieri, C.L., Neutrophils reduce the parasite burden in Leishmania (Leishmania) amazonensis-infected macrophages (2010) PLoS One, 5, pp. e13815
dc.descriptionAsato, Y., Oshiro, M., Myint, C.K., Phylogenic analysis of the genus Leishmania by cytochrome b gene sequencing (2009) Exp. Parasitol., 121, pp. 352-361
dc.descriptionFraga, J., Montalvo, A.M., DeDoncker, S., Dujardin, J.C., Van Der Auwera, G., Phylogeny of Leishmania species based on the heat-shock protein 70 gene (2010) Infect Genet. Evol., 10, pp. 238-245
dc.descriptionRochette, A., McNicoll, F., Girard, J., Characterization and developmental gene regulation of a large gene family encoding amastin surface proteins in Leishmania spp (2005) Mol. Biochem. Parasitol., 140, pp. 205-220
dc.descriptionJackson, A.P., The evolution of amastin surface glycoproteins in trypanosomatid parasites (2010) Mol. Biol. Evol., 27, pp. 33-45
dc.descriptionCruz, M.C., Souza-Melo, N., Da Silva, C.V., Trypanosomacruzi: Role of delta-Amastinonextracellular amastigote cell invasion and differentiation (2012) PLoS One, 7, pp. e51804
dc.descriptionStober, C.B., Lange, U.G., Roberts, M.T., From genome to vaccines for leishmaniasis: Screening 100 novel vaccine candidates against murine Leishmania major infection (2006) Vaccine, 24, pp. 2602-2616
dc.descriptionRafati, S., Hassani, N., Taslimi, Y., Movassagh, H., Rochette, A., Papadopoulou, B., Amastin peptide-binding antibodies as biomarkers of active human visceral leishmaniasis (2006) Clin. Vaccine Immunol., 13, pp. 1104-1110
dc.descriptionSalotra, P., Duncan, R.C., Singh, R., Subba Raju, B.V., Sreenivas, G., Nakhasi, H.L., Upregulation of surface proteins in Leishmania donovani isolated from patients of post kala-Azar dermal leishmaniasis (2006) Microbes Infect., 8, pp. 637-644
dc.descriptionRochette, A., Raymond, F., Ubeda, J.M., Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species (2008) BMC Genomics, 9, p. 255
dc.descriptionAzizi, H., Hassani, K., Taslimi, Y., Najafabadi, H.S., Papadopoulou, B., Rafati, S., Searching for virulence factors in the non-pathogenic parasite to humans Leishmania tarentolae (2009) Parasitology, 136, pp. 723-735
dc.descriptionNaderer, T., McConville, M.J., The Leishmaniamacrophage interaction: A metabolic perspective (2008) Cell Microbiol., 10, pp. 301-308
dc.descriptionDe Souza Leao, S., Lang, T., Prina, E., Hellio, R., Antoine, J.C., Intracellular Leishmania amazonensis amastigotes internalize and degrade MHC class II molecules of their host cells (1995) J. Cell Sci., 108, pp. 3219-3231
dc.descriptionSilverman, J.M., Chan, S.K., Robinson, D.P., Proteomic analysis of the secretome of Leishmania donovani (2008) Genome Biol., 9, pp. R35
dc.descriptionMouchess, M.L., Arpaia, N., Souza, G., Transmembrane mutations in Toll-like receptor 9 bypass the requirement for ectodomain proteolysis and induce fatal inflammation (2011) Immunity, 35, pp. 721-732
dc.descriptionTuon, F.F., Fernandes, E.R., Pagliari, C., Duarte, M.I., Amato, V.S., The expression of TLR9 in human cutaneous leishmaniasis is associated with granuloma (2010) Parasite Immunol., 32, pp. 769-772
dc.descriptionAbou Fakher, F.H., Rachinel, N., Klimczak, M., Louis, J., Doyen, N., TLR9-dependent activation of dendritic cells byDNA fromLeishmania major favors Th1 cell development and the resolution of lesions (2009) J. Immunol., 182, pp. 1386-1396
dc.descriptionCarvalho, L.P., Petritus, P.M., Trochtenberg, A.L., Lymph node hypertrophy following Leishmania major infection is dependent on TLR9 (2012) J. Immunol., 188, pp. 1394-1401
dc.descriptionFavali, C., Tavares, N., Clarencio, J., Barral, A., Barral- Netto, M., Brodskyn, C., Leishmania amazonensis infection impairs differentiation and function of human dendritic cells (2007) J. Leukoc. Biol., 82, pp. 1401-1406
dc.descriptionLezama-Davila, C.M., Isaac-Marquez, A.P., Systemic cytokine response in humans with chiclero's ulcers (2006) Parasitol Res., 99, pp. 546-553
dc.descriptionLinares, E., Augusto, O., Barao, S.C., Giorgio, S., Leishmania amazonensis infection does not inhibit systemic nitric oxide levels elicited by lipopolysaccharide in vivo (2000) J. Parasitol., 86, pp. 78-82
dc.languageen
dc.publisher
dc.relationDNA Research
dc.rightsaberto
dc.sourceScopus
dc.titleThe Genome Sequence Of Leishmania (leishmania) Amazonensis: Functional Annotation And Extended Analysis Of Gene Models
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución