dc.creatorRocha T.L.
dc.creatorDias M.
dc.date2015
dc.date2015-06-25T12:54:19Z
dc.date2015-11-26T15:16:05Z
dc.date2015-06-25T12:54:19Z
dc.date2015-11-26T15:16:05Z
dc.date.accessioned2018-03-28T22:25:56Z
dc.date.available2018-03-28T22:25:56Z
dc.identifier
dc.identifierJournal Of Intelligent Material Systems And Structures. Sage Publications Ltd, v. 26, n. 4, p. 476 - 486, 2015.
dc.identifier1045389X
dc.identifier10.1177/1045389X14529610
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84922575321&partnerID=40&md5=642c1ece53675967f6ae4e622eddbf4d
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85579
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85579
dc.identifier2-s2.0-84922575321
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1259175
dc.descriptionNoise in a vehicle is generally caused by the vibration of various automotive components, such as the dashboard, door panels, and roof. For example, vibrations caused by the engine may cause a dash panel to vibrate leading to noise in the vehicle cabin. The control of such noise and vibration may be achieved by placing a viscoelastic or other suitable damping material on the automotive component; however, conventional damping materials usually have a high density, which can lead to significant increases in the overall mass of the sound insulation system. A lightweight alternative employs piezoceramic patches connected to a resistor-inductor circuit, where the mechanical vibration, converted into electrical energy by the piezoceramic, is dissipated in the form of thermal heat through the resistor. The presence of an inductive element allows the system to perform in the vicinity of a mode of the vibrating structure, in an effect similar to a resonant vibration absorber. In this work, the damping capacity of this resonant electrical circuit is demonstrated in a dash panel installed between coupled reverberant and anechoic rooms for assessments of sound transmission loss. Finite element simulation and theoretical analysis are used to support the choice of the electrical component values and the correct placement for piezoelectric patches. The resulting sound transmission control is compared to baseline measurements with conventional viscoelastic material thermally bonded to the panel surface. The work is concluded with a discussion on the achieved results and mass saving benefits of the proposed damping technique.
dc.description26
dc.description4
dc.description476
dc.description486
dc.descriptionAvitabile, P., (2007) Experimental Techniques, , (Journal compilation, Society for Experimental Mechanics). University of Massachusetts, Lowell, MA
dc.descriptionBalachandran, B., Sampath, A., Park, J., Active control of noise in a three-dimensional enclosure (1996) Smart Materials and Structures, 5, pp. 89-97
dc.descriptionBarboni, R., Mannini, A., Fantini, E., Optimal placement of PZT actuators for the control of beam dynamics (2000) Smart Materials and Structures, 9, pp. 110-120
dc.descriptionBenjeddou, A., Advances in piezoelectric finite elements modeling of adaptive structural elements: A survey (2000) Computers & Structures, 74, pp. 465-476
dc.descriptionCollet, M., Ouisse, M., Cunefare, K., Chapter 10: Vibroacoustic energy diffusion optimization in beams and plates by means of distributed shunted piezoelectric patches (2011) Vibration and Structural Acoustics Analysis: Current Research and Related Technologies, pp. 265-302. , Vasques CMA and Dias Rodrigues J (eds) London: Springer Science+Business Media
dc.descriptionCrocker, M.J., (2007) Handbook of Noise and Vibration Control, , Hoboken, NJ: John Wiley & Sons, Inc
dc.descriptionFahy, F.J., (1995) Sound Intensity. 2nd Ed., , London: E & FN Spon
dc.descriptionChapman & Hall
dc.descriptionFahy, F.J., Walker, J.G., (1998) Fundamentals of Noise and Vibration, 507p. , London: E & FN Spon
dc.descriptionForward, R.L., Electronic damping of vibrations in optical structures (1979) Applied Optics, 18 (5), pp. 690-697
dc.descriptionFuller, C.R., Elliott, S.J., Nelson, P.A., (1996) Active Control of Vibration, , London
dc.descriptionSan Diego, CA: Academic Press
dc.descriptionHagood, N.W., Von Flotow, A., Damping of structural vibrations with piezoelectric materials and passive electrical networks (1991) Journal of Sound and Vibration, 146 (2), pp. 243-268
dc.description(1988) IEEE Standard on Piezoelectricity, , IEEE Standard 176-1987 New York: Institute of Electrical and Electronic Engineers
dc.description(1993) IEEE Standard Definitions and Methods of Measurement for Piezoelectric Vibrators, , IEEE Standard 177-1966 New York: Institute of Electrical and Electronic Engineers
dc.descriptionInman, D.J., Park, G., Adachi, K., Passive damping augmentation using macro-fiber composite actuators (2002) Proceedings of ASME International Mechanical Engineering Congress and Exposition IMECEf02, New Orleans, LA, 17- 22 November
dc.description(2000) Acoustics - Measurement of Sound Insulation in Buildings and of Building Elements Using Sound Intensity - Part 1: Laboratory Measurements, , ISO 15186-1:2000 (ISO Publications)
dc.descriptionJeric, K.M., (1999) An Experimental Evaluation of the Application of Smart Damping Materials for Reducing Structural Noise and Vibrations, , Master's Thesis, Virginia Tech., Blacksburg, VA
dc.descriptionJuhl, P.M., Petersen, S.O., Hald, J., Localizing sound sources in 3-D space using spherical harmonic beamforming (2005) Proceedings of Inter-noise 24 August 2005
dc.descriptionKim, J.Y., Singh, R., Effect of viscoelastic patch damping on casing cover dynamics (2001) SAE Transactions, 110, pp. 1695-1703
dc.descriptionPoh, S., Baz, A., Balachandran, B., Experimental adaptive control of sound radiation from a panel into an acoustic cavity using active constrained layer damping (1996) Smart Materials and Structures, 5, pp. 649-659
dc.descriptionRocha, T.L., Calc¸ada, M., Silva, Y.A.R., The use of piezoelectric resonators to enhance sound insulation in a vehicle panel (2012) SAE Brasil International Noise and Vibration Colloquium, , Oceania Park Hotel, Florianópolis, Brazil, 25-28 November
dc.descriptionSampath, A., Balachandran, B., Studies on performance functions for interior noise control (1997) Smart Materials and Structures, 6, pp. 315-332
dc.descriptionSeba, B., Ni, J., Lohmann, B., Vibration attenuation using a piezoelectric shunt circuit based on finite element method analysis (2006) Smart Materials and Structures, 15, pp. 509-517
dc.descriptionViana, F.A.C., Steffen, V., Jr., Multimodal vibration damping through piezoelectric patches and optimal resonant shunt circuits (2006) Journal of the Brazilian Society of Mechanical Sciences and Engineering, 28 (3), pp. 293-310
dc.languageen
dc.publisherSAGE Publications Ltd
dc.relationJournal of Intelligent Material Systems and Structures
dc.rightsfechado
dc.sourceScopus
dc.titleImproved Sound Transmission Loss In An Automotive Component Using Piezoceramic Patches And Dissipative Shunt Circuits
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución