dc.creatorda Silva V.C.H.
dc.creatorCagliari T.C.
dc.creatorLima T.B.
dc.creatorGozzo F.C.
dc.creatorRamos C.H.I.
dc.date2013
dc.date2015-06-25T19:18:03Z
dc.date2015-11-26T15:15:54Z
dc.date2015-06-25T19:18:03Z
dc.date2015-11-26T15:15:54Z
dc.date.accessioned2018-03-28T22:25:44Z
dc.date.available2018-03-28T22:25:44Z
dc.identifier
dc.identifierPlant Physiology And Biochemistry. , v. 68, n. , p. 16 - 22, 2013.
dc.identifier9819428
dc.identifier10.1016/j.plaphy.2013.03.015
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84876722592&partnerID=40&md5=a61bf4516d98b3e7653655e72977ddc2
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89661
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89661
dc.identifier2-s2.0-84876722592
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1259130
dc.descriptionHsp90s are involved in several cellular processes, such as signaling, proteostasis, epigenetics, differentiation and stress defense. Although Hsp90s from different organisms are highly similar, they usually have small variations in conformation and function. Thus, the characterization of different Hsp90s is important to gain insight into the structure-function relationship that makes these chaperones key regulators in protein homeostasis. This work describes the characterization of a cytosolic Hsp90 from sugarcane and its comparison with Hsp90s from other plants. Previous expressed sequence tag (EST) studies in Saccharum spp. (sugarcane) predicted the presence of an mRNA coding for a cytosolic Hsp90. The corresponding cDNA was cloned, and the recombinant protein was purified and its conformation and function characterized. The structural conformation of Hsp90 was assessed by chemical cross-linking and hydrogen/deuterium exchange using mass spectrometry and hydrodynamic assays, which revealed regions accessible to solvent and that Hsp90 is an elongated dimer in solution. The invivo expression of Hsp90 in sugarcane leaves was confirmed by western blot, and invitro functional characterization indicated that sugarcane Hsp90 has strong chaperone activity. © 2013 Elsevier Masson SAS.
dc.description68
dc.description
dc.description16
dc.description22
dc.descriptionTiroli-Cepeda, A., Ramos, C.H.I., An overview of the role of molecular chaperones in protein homeostasis (2011) Protein Pept. Lett., 18, pp. 101-109
dc.descriptionChen, B., Zhong, D., Monteiro, A., Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms (2006) BMC Genomics, 7, p. 156
dc.descriptionZhao, R., Davey, M., Hsu, Y.C., Kaplanek, P., Tong, A., Parsons, A.B., Krogan, N., Houry, W.A., Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone (2005) Cell, 120, pp. 715-727
dc.descriptionMcClellan, A.J., Xia, Y., Deutschbauer, A.M., Davis, R.W., Gerstein, M., Frydman, J., Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches (2007) Cell, 131, pp. 121-135
dc.descriptionMakhnevych, T., Houry, W.A., The role of Hsp90 in protein complex assembly (2011) Biochim. Biophys. Acta, 1823, pp. 674-682
dc.descriptionda Silva, V.C., Ramos, C.H.I., The network interaction of human 90 kDa heat shock protein Hsp90: a target for cancer therapeutics (2012) J.Proteomics, 75, pp. 2790-2802
dc.descriptionJackson, S.E., Hsp90: structure and function (2012) Top. Curr. Chem.
dc.descriptionObermann, W.M.J., Sondermann, H., Russo, A.A., Pavletich, N.P., Hartl, F.U., Invivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis (1998) J.Cell. Biol., 143, pp. 901-910
dc.descriptionMatsumoto, S., Tanaka, E., Nemoto, T.K., Ono, T., Takagi, T., Imai, J., Kimura, Y., Mizuno, A., Interaction between the N-terminal and middle regions is essential for the invivo function of HSP90 molecular chaperone (2002) J.Biol. Chem., 277, pp. 34959-34966
dc.descriptionHawle, P., Siepmann, M., Harst, A., Siderius, M., Reusch, H.P., Obermann, W.M., The middle domain of Hsp90 acts as a discriminator between different types of client proteins (2006) Mol. Cell. Biol., 26, pp. 8358-8395
dc.descriptionRatzke, C., Mickler, M., Hellenkamp, B., Buchner, J., Hugel, T., Dynamics of heat shock protein 90 C-terminal dimerization is an important part of its conformational cycle (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 16101-16106
dc.descriptionProdromou, C., Siligardi, G., O'Brien, R., Woolfson, D.N., Regan, L., Panaretou, B., Ladbury, J.E., Pearl, L.H., Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones (1999) EMBO J., 18, pp. 754-762
dc.descriptionSangster, T.A., Queitsch, C., The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity (2005) Curr. Opin. Plant Biol., 8, pp. 86-92
dc.descriptionRatzke, C., Nguyen, M.N.T., Mayer, M.P., Hugel, T., From a ratchet mechanism to random fluctuations evolution of Hsp90's mechanochemical cycle (2012) J.Mol. Biol., 423, pp. 462-471
dc.descriptionAli, M.M., Roe, S.M., Vaughan, C.K., Meyer, P., Panaretou, B., Piper, P.W., Prodromou, C., Pearl, L.H., Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex (2006) Nature, 440, pp. 1013e1017
dc.descriptionShiau, A.K., Harris, S.F., Southworth, D.R., Agard, D.A., Structural analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements (2006) Cell, 127, pp. 329-340
dc.descriptionDollins, D.E., Warren, J.J., Immormino, R.M., Gewirth, D.T., Structures of GRP94-nucleotide complexes reveal mechanistic differences between the hsp90 chaperones (2007) Mol. Cell., 28, pp. 41-56
dc.descriptionMayer, M.P., Gymnastics of molecular chaperones (2010) Mol. Cell., 39, pp. 321-331
dc.descriptionMendonça, Y.A., Ramos, C.H.I., Cloning, purification and characterization of a 90kDa heat shock protein from Citrus sinensis (sweet orange) (2012) Plant Physiol. Biochem., 50, pp. 87-94
dc.descriptionRamos, C.H.I., Ferreira, S.T., Protein folding, misfolding and aggregation: evolving concepts and conformational diseases (2005) Protein Pept. Lett., 12, pp. 213-222
dc.descriptionMinami, Y., Kimura, Y., Kawasaki, H., Suzuki, K., Yahara, I., The carboxy-terminal region of mammalian HSP90 is required for its dimerization and function invivo (1994) Mol. Cell. Biol., 14, pp. 1459-1464
dc.descriptionIglesias, A.H., Santos, L.F., Gozzo, F.C., Identification of cross-linked peptides by high-resolution precursor ion scan (2010) Anal. Chem., 82, pp. 909-916
dc.descriptionBorges, J.C., Ramos, C.H.I., Analysis of molecular targets of Mycobacterium tuberculosis by analytical ultracentrifugation (2011) Curr. Med. Chem., 18, pp. 1276-1285
dc.descriptionCantor, C.R., Schimmel, P.R., Size and shape of macromolecules (1980) Biophysical Chemistry, Part II: Techniques for the Study of Biological Structure and Function, pp. 539-590. , W.H. Freeman and Company, New York, L.W. McCombs (Ed.)
dc.descriptionBorges, J.C., Peroto, M.C., Ramos, C.H.I., Molecular chaperone genes in the sugarcane expressed sequence database (SUCEST) (2001) Gen. Mol. Biol., 24, pp. 85-92
dc.descriptionBorges, J.C., Cagliari, T.C., Ramos, C.H.I., Expression and variability of molecular chaperones in the sugarcane expressome (2007) J.Plant Physiol., 164, pp. 505-513
dc.descriptionVirdi, A.S., Thakur, A., Dutt, S., Kumar, S., Singh, P., Asorghum 85 kDa heat stress-modulated protein shows calmodulin-binding properties and cross-reactivity to anti-Neurospora crassa Hsp 80 antibodies (2009) FEBS Lett., 583, pp. 767-770
dc.descriptionYabe, N., Takahashi, T., Komeda, Y., Analysis of tissue-specific expression of Arabidopsis thaliana Hsp90-family gene HSP81 (1994) Plant Cell. Physiol., 35, pp. 1207-1219
dc.descriptionSangster, T.A., Bahrami, A., Wilczek, A., Watanabe, E., Schellenberg, K., McLellan, C., Kelley, A., Lindquiest, S., Phenotypic diversity and altered environmental plasticity in Arabidopsis thaliana with reduced Hsp90 levels (2007) PLoS One, 2, pp. e648
dc.descriptionBuchner, J., Grallert, H., Jakob, U., Analysis of chaperone function using citrate synthase as nonnative substrate protein (1998) Methods Enzymol., 290, pp. 323-338
dc.descriptionJakob, U., Lilie, H., Meyer, I., Buchner, J., Transient interaction of hsp90 with early unfolding intermediates of citrate synthase-implications for heat shock invivo (1995) J.Biol. Chem., 270, pp. 7288-7294
dc.descriptionKrukenberg, K.A., Southworth, D.R., Street, T.O., Agard, D.A., PH-dependent conformational changes in bacterial Hsp90 reveal a Grp94-like conformation at pH 6 that is highly active in suppression of citrate synthase aggregation (2009) J.Mol. Biol., 390, pp. 278-291
dc.descriptionTaipale, M., Krykbaeva, I., Koeva, M., Kayatekin, C., Westover, K.D., Karras, G.I., Lindquist, S., Quantitative analysis of hsp90-client interactions reveals principles of substrate recognition (2012) Cell, 150, pp. 987-1001
dc.descriptionVettore, A.L., da Silva, F.R., Kemper, E.L., Arruda, P., The libraries that made SUCEST (2001) Genet. Mol. Biol., 24, pp. 1-7
dc.descriptionEdelhock, H., Spectroscopic determination of tryptophan and tyrosine in protein (1967) Biochemistry, 6, pp. 1948-1954
dc.descriptionBradford, M.M., Arapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254
dc.descriptionCorrea, D.H.A., Ramos, C.H.I., The use of circular dichroism spectroscopy to study protein folding, form and function (2009) Afr. J. Biochem. Res., 3, pp. 164-173
dc.descriptionMcIlwain, S., Draghicescu, P., Singh, P., Goodlett, D.R., Noble, W.S., Detecting cross-linked peptides by searching against a database of cross-linked peptide pairs (2010) J.Proteome Res., 9, pp. 2488-2495
dc.descriptionDu, X., Chowdhury, S.M., Manes, N., Wu, S., Mayer-Cumblidge, U., Adkins, J., Anderson, G.A., Smith, R.D., Xlink-identifier: an automated data analysis platform for confident identifications of chemically cross-linked peptides using tandem mass spectrometry (2010) J.Proteome Res., 10, pp. 923-931
dc.descriptionSali, A., Blundell, T.L., Comparative protein modelling by satisfaction of spatial restraints (1993) J.Mol. Biol., 234, pp. 779-815
dc.descriptionZhang, Y., I-TASSER server for protein 3D structure prediction (2008) BMC Bioinforma., 9, p. 40
dc.descriptionSchwede, T., Kopp, J., Guex, N., Peitsch, M.C., SWISS-MODEL: an automated protein homology-modeling server (2003) Nucl. Acids Res., 31, pp. 3381-3385
dc.descriptionLaskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M., PROCHECK: a program to check the stereochemical quality of protein structures (1993) J.Appl. Cryst, 26, pp. 283-291
dc.descriptionOrtega, A., Amoros, D., García de la Torre, J., Prediction of hydrodynamic and other solution properties of rigid proteins from atomic and residue-level models (2011) Biophys. J., 101, pp. 892-898
dc.descriptionWales, T.F., Engen, J.R., Partial unfolding of diverse SH3 domains on a wide timescale (2006) J.Mol. Biol., 357, pp. 1592-1604
dc.descriptionEngen, J.R., Analysis of protein complexes with hydrogen exchange and mass spectrometry (2003) Analyst, 128, pp. 623-628
dc.descriptionWei, H., Ahn, J., Yu, Y.Q., Tymiak, A., Engen, J.R., Chen, G., Using hydrogen/deuterium exchange mass spectrometry to study conformational changes in granulocyte colony stimulating factor upon PEGylation (2012) J.Am. Soc. Mass. Spectrom., 23, pp. 498-504
dc.descriptionDelaplace, P., van der Wal, F., Dierick, J.F., Cordewener, J.H., Fauconnier, M.L., du Jardin, P., America, A.H., Potato tuber proteomics: comparison of two complementary extraction methods designed for 2-DE of acidic proteins (2006) Proteomics, 6, pp. 6494-6497
dc.languageen
dc.publisher
dc.relationPlant Physiology and Biochemistry
dc.rightsfechado
dc.sourceScopus
dc.titleConformational And Functional Studies Of A Cytosolic 90kda Heat Shock Protein Hsp90 From Sugarcane
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución