dc.creatorFranco Cairo J.P.L.
dc.creatorOliveira L.C.
dc.creatorUchima C.A.
dc.creatorAlvarez T.M.
dc.creatorCitadini A.P.D.S.
dc.creatorCota J.
dc.creatorLeonardo F.C.
dc.creatorCosta-Leonardo A.M.
dc.creatorCarazzolle M.F.
dc.creatorCosta F.F.
dc.creatorPereira G.A.G.
dc.creatorSquina F.M.
dc.date2013
dc.date2015-06-25T19:17:58Z
dc.date2015-11-26T15:15:51Z
dc.date2015-06-25T19:17:58Z
dc.date2015-11-26T15:15:51Z
dc.date.accessioned2018-03-28T22:25:39Z
dc.date.available2018-03-28T22:25:39Z
dc.identifier
dc.identifierInsect Biochemistry And Molecular Biology. , v. 43, n. 10, p. 970 - 981, 2013.
dc.identifier9651748
dc.identifier10.1016/j.ibmb.2013.07.007
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84883277762&partnerID=40&md5=c7818cf8a14ad6c23826fb1e987bdba7
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89646
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89646
dc.identifier2-s2.0-84883277762
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1259107
dc.descriptionTermites can degrade up to 90% of the lignocellulose they ingest using a repertoire of endogenous and symbiotic degrading enzymes. Termites have been shown to secrete two main glycoside hydrolases, which are GH1 (EC 3.2.1.21) and GH9 (EC 3.2.1.4) members. However, the molecular mechanism for lignocellulose degradation by these enzymes remains poorly understood. The present study was conducted to understand the synergistic relationship between GH9 (CgEG1) and GH1 (CgBG1) from Coptotermes gestroi, which is considered the major urban pest of São Paulo State in Brazil. The goal of this work was to decipher the mode of operation of CgEG1 and CgBG1 through a comprehensive biochemical analysis and molecular docking studies. There was outstanding degree of synergy in degrading glucose polymers for the production of glucose as a result of the endo-β-1,4-glucosidase and exo-β-1,4-glucosidase degradation capability of CgEG1 in concert with the high catalytic performance of CgBG1, which rapidly converts the oligomers into glucose. Our data not only provide an increased comprehension regarding the synergistic mechanism of these two enzymes for cellulose saccharification but also give insight about the role of these two enzymes in termite biology, which can provide the foundation for the development of a number of important applied research topics, such as the control of termites as pests as well as the development of technologies for lignocellulose-to-bioproduct applications. © 2013 Elsevier Ltd.
dc.description43
dc.description10
dc.description970
dc.description981
dc.descriptionAguiar-Oliveira, E., Maugeri, F., Thermal stability of the immobilized fructosyltransferase from Rhodotorula sp. (2011) Braz. J. Chem. Eng., 28, pp. 363-372
dc.descriptionBarsotti, R.C., Costa-Leonardo, A.M., (2005) The Caste System of Coptotermes gestroi (Isoptera:Rhinotermitidae), 46, p. 17
dc.descriptionBendtsen, J.D., Nielsen, H., von Heijne, G., Brunak, S., Improved prediction of signal peptides: SignalP 3.0 (2004) J.Mol. Biol., 340, pp. 783-795
dc.descriptionBenkert, P., Kunzli, M., Schwede, T., QMEAN server for protein model quality estimation (2009) Nucleic Acids Res., 37, pp. W510-W514
dc.descriptionBradford, M.M., Arapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254
dc.descriptionBrune, A., Termite guts: the world's smallest bioreactors (1998) Trends Biotechnol, 16, pp. 16-21
dc.descriptionBrune, A., Ohkuma, M., Role of the termite gut microbiota in symbiotic digestion (2011) Biology of Termites: A Modern Synthesis, pp. 439-475. , Springer, Netherlands, D.E. Bignell, Y. Roisin, N. Lo (Eds.)
dc.descriptionBuck, M., Bouguet-Bonnet, S., Pastor, R.W., MacKerell, A.D., Importance of the CMAP correction to the CHARMM22 protein force field: dynamics of hen lysozyme (2006) Biophys. J., 90, pp. L36-L38
dc.descriptionCantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V., Henrissat, B., The carbohydrate-active EnZymes database (CAZy): an expert resource for Glycogenomics (2009) Nucleic Acids Res., 37, pp. D233-D238
dc.descriptionChandrasekharaiah, M., Thulasi, A., Bagath, M., Kumar, D.P., Santosh, S.S., Palanivel, C., Jose, V.L., Sampath, K.T., Molecular cloning, expression and characterization of a novel feruloyl esterase enzyme from the symbionts of termite(Coptotermes formosanus) gut (2011) BMB Rep., 44, pp. 52-57
dc.descriptionChen, X.A., Ishida, N., Todaka, N., Nakamura, R., Maruyama, J., Takahashi, H., Kitamoto, K., Promotion of efficient saccharification of crystalline cellulose by Aspergillus fumigatus Swo1 (2010) Appl. Environ. Microbiol., 76, pp. 2556-2561
dc.descriptionConverse, A.O., Optekar, J.D., Asynergistic kinetics model for enzymatic cellulose hydrolysis compared to degree-of-synergism experimental results (1993) Biotechnol. Bioeng., 42, pp. 145-148
dc.descriptionCoy, M.R., Salem, T.Z., Denton, J.S., Kovaleva, E.S., Liu, Z., Barber, D.S., Campbell, J.H., Scharf, M.E., Phenol-oxidizing laccases from the termite gut (2010) Insect Biochem. Mol. Biol., 40, pp. 723-732
dc.descriptionde Vasconcelos, S.M., Santos, A.M.P., Rocha, G.J.M., Souto-Maior, A.M., Diluted phosphoric acid pretreatment for production of fermentable sugars in a sugarcane-based biorefinery (2013) Bioresour. Technol., 135, pp. 46-52
dc.descriptionFranco Cairo, J.P., Leonardo, F.C., Alvarez, T.M., Ribeiro, D.A., Buchli, F., Costa-Leonardo, A.M., Carazzolle, M.F., Squina, F.M., Functional characterization and target discovery of glycoside hydrolases from lower termite Coptotermes gestroi digestome (2011) Biotechnol. Biofuels, 4, p. 50
dc.descriptionFujita, A., Hojo, M., Aoyagi, T., Hayashi, Y., Arakawa, G., Tokuda, G., Watanabe, H., Details of the digestive system in the midgut of Coptotermes formosanus Shiraki (2010) J.Wood Sci., 56, pp. 222-226
dc.descriptionGonçalves, T.A., Damasio, A.R., Segato, F., Alvarez, T.M., Bragatto, J., Brenelli, L.B., Citadini, A.P., Squina, F.M., Functional characterization and synergic action of fungal xylanase and arabinofuranosidase for production of xylooligosaccharides (2012) Bioresour. Technol., 119, pp. 293-299
dc.descriptionGuerin, D.M., Lascombe, M.B., Costabel, M., Souchon, H., Lamzin, V., Beguin, P., Alzari, P.M., Atomic (0.94 A) resolution structure of an inverting glycosidase in complex with substrate (2002) J.Mol. Biol., 316, pp. 1061-1069
dc.descriptionHongoh, Y., Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut (2011) Cell Mol. Life Sci., 68, pp. 1311-1325
dc.descriptionHoogwijk, M., Faaij, A., Eickhout, B., de Vries, B., Turkenburg, W., Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios (2005) Biomass and Bioenergy, 29, pp. 225-257
dc.descriptionJeng, W.Y., Wang, N.C., Lin, M.H., Lin, C.T., Liaw, Y.C., Chang, W.J., Liu, C.I., Wang, A.H., Structural and functional analysis of three beta-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis (2011) J.Struct. Biol., 173, pp. 46-56
dc.descriptionJenkins, T.M., Jones, S.C., Lee, C.Y., Forschler, B.T., Chen, Z., Lopez-Martinez, G., Gallagher, N.T., Kleinschmidt, S., Phylogeography illuminates maternal origins of exotic Coptotermes gestroi (Isoptera: Rhinotermitidae) (2007) Mol. Phylogenet. Evol., 42, pp. 612-621
dc.descriptionKatsumata, K., Jin, Z., Hori, K., Iiyama, K., Structural changes in lignin of tropical woods during digestion by termite, Cryptotermes brevis (2007) J.Wood Sci., 53, pp. 419-426
dc.descriptionKhademi, S., Guarino, L.A., Watanabe, H., Tokuda, G., Meyer, E.F., Structure of an endoglucanase from termite, Nasutitermes takasagoensis (2002) Acta Crystallogr. D Biol. Crystallogr., 58, pp. 653-659
dc.descriptionKiefer, F., Arnold, K., Kunzli, M., Bordoli, L., Schwede, T., The SWISS-MODEL repository and associated resources (2009) Nucleic Acids Res., 37, pp. D387-D392
dc.descriptionKlose, D.P., Wallace, B.A., Janes, R.W., 2Struc: the secondary structure server (2010) Bioinformatics, 26, pp. 2624-2625
dc.descriptionKoshland, D.E., Sterrochemistry and the mechanism of enzymatic reactions (1953) Biol. Rev., 28, pp. 416-436
dc.descriptionLang, P.T., Brozell, S.R., Mukherjee, S., Pettersen, E.F., Meng, E.C., Thomas, V., Rizzo, R.C., Kuntz, I.D., DOCK 6: combining techniques to model RNA-small molecule complexes (2009) RNA, 15, pp. 1219-1230
dc.descriptionLeonardo, F.C., da Cunha, A.F., da Silva, M.J., Carazzolle, M.F., Costa-Leonardo, A.M., Costa, F.F., Pereira, G.A., Analysis of the workers head transcriptome of theAsian subterranean termite, Coptotermes gestroi (2011) Bull. Entomol. Res., 101, pp. 383-391
dc.descriptionLi, Y., Irwin, D.C., Wilson, D.B., Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A (2007) Appl. Environ. Microbiol., 73, pp. 3165-3172
dc.descriptionLynd, L.R., Zhang, Y., Quantitative determination of cellulase concentration as distinct from cell concentration in studies of microbial cellulose utilization: analytical framework and methodological approach (2002) Biotechnol. Bioeng., 77, pp. 467-475
dc.descriptionMiller, G.L., Use of dinitrosalicylic acid reagent for determination of reducing sugar (1959) Anal. Chem., 31, pp. 426-428
dc.descriptionMurashima, K., Kosugi, A., Doi, R.H., Synergistic effects on crystalline cellulose degradation between cellulosomal cellulases from Clostridium cellulovorans (2002) J.Bacteriol., 184, pp. 5088-5095
dc.descriptionNaran, R., Pierce, M.L., Mort, A.J., Detection and identification of rhamnogalacturonan lyase activity in intercellular spaces of expanding cotton cotyledons (2007) Plant J., 50, pp. 95-107
dc.descriptionNi, J., Takehara, M., Watanabe, H., Heterologous overexpression of a mutant termite cellulase gene in Escherichia coli by DNA shuffling of four orthologous parental cDNAs (2005) Biosci. Biotechnol. Biochem., 69, pp. 1711-1720
dc.descriptionNi, J., Tokuda, G., Takehara, M., Watanabe, H., Heterologous expression and enzymatic characterization of β-glucosidase from the drywood-eating termite, Neotermes koshunensis (2007) Appl. Entomol. Zool., 42, pp. 457-463
dc.descriptionOhkuma, M., Termite symbiotic systems: efficient bio-recycling of lignocellulose (2003) Appl. Microbiol. Biotechnol., 61, pp. 1-9
dc.descriptionOhkuma, M., Hongoh, Y., Noda, S., Symbiotic complex in the termite gut microbial community (2008) Tanpakushitsu. Kakusan. Koso., 53, pp. 1841-1849
dc.descriptionPettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., UCSF Chimera-a visualization system for exploratory research and analysis (2004) J.Comput. Chem., 25, pp. 1605-1612
dc.descriptionPronk, S., Pall, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M.R., Lindahl, E., GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit (2013) Bioinformatics, 29 (7), pp. 845-854
dc.descriptionRibeiro, D.A., Cota, J., Alvarez, T.M., Bruchli, F., Bragato, J., Pereira, B.M., Pauletti, B.A., Squina, F.M., The Penicillium echinulatum secretome on sugar cane bagasse (2012) PLoS One, 7, pp. e50571
dc.descriptionRincones, J., Zeidler, A.F., Grassi, M.C.B., Carazzolle, M.F., Pereira, G.A.G., The golden bridge for nature: the new biology applied to bioplastics (2009) Pol. Rev., 49, pp. 85-106
dc.descriptionRudsander, U.J., Sandstrom, C., Piens, K., Master, E.R., Wilson, D.B., Brumer Iii, H., Kenne, L., Teeri, T.T., Comparative NMR analysis of cellooligosaccharide hydrolysis by GH9 bacterial and plant endo-1,4-beta-glucanases (2008) Biochemistry, 47, pp. 5235-5241
dc.descriptionSagermann, M., Matthews, B.W., Crystal structures of a T4-lysozyme duplication-extension mutant demonstrate that the highly conserved beta-sheet region has low intrinsic folding propensity (2002) J.Mol. Biol., 316, pp. 931-940
dc.descriptionSakon, J., Irwin, D., Wilson, D.B., Karplus, P.A., Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca (1997) Nat. Struct. Biol., 4, pp. 810-818
dc.descriptionScharf, M.E., Karl, Z.J., Sethi, A., Boucias, D.G., Multiple levels of synergistic collaboration in termite lignocellulose digestion (2011) PLoS One, 6, pp. e21709
dc.descriptionScharf, M.E., Kovaleva, E.S., Jadhao, S., Campbell, J.H., Buchman, G.W., Boucias, D.G., Functional and translational analyses of a beta-glucosidase gene (glycosyl hydrolase family 1) isolated from the gut of the lower termite Reticulitermes flavipes (2010) Insect Biochem. Mol. Biol., 40, pp. 611-620
dc.descriptionSchwarz, W.H., The cellulosome and cellulose degradation by anaerobic bacteria (2001) Appl. Microbiol. Biotechnol., 56, pp. 634-649
dc.descriptionSethi, A., Slack, J.M., Kovaleva, E.S., Buchman, G.W., Scharf, M.E., Lignin-associated metagene expression in a lignocellulose-digesting termite (2013) Insect Biochem. Mol. Biol., 43, pp. 91-101
dc.descriptionSoccol, C.R., Vandenberghe, L.P., Medeiros, A.B., Karp, S.G., Buckeridge, M., Ramos, L.P., Pitarelo, A.P., Torres, F.A., Bioethanol from lignocelluloses: status and perspectives in Brazil (2010) Bioresour. Technol., 101, pp. 4820-4825
dc.descriptionSouza, A., Leite, D., Pattathil, S., Hahn, M., Buckeridge, M., Composition and structure of sugarcane cell wall Polysaccharides: implications for second-generation bioethanol production (2013) Bioenerg. Res., 6, pp. 564-579
dc.descriptionSquina, F.M., Prade, R.A., Wang, H., Murakami, M.T., Expression, purification, crystallization and preliminary crystallographic analysis of an endo-1,5-alpha-L-arabinanase from hyperthermophilic Thermotoga petrophila (2009) Acta Crystallogr. Sect. F Struct. Biol. Cryst Commun., 65, pp. 902-905
dc.descriptionTartar, A., Wheeler, M.M., Zhou, X., Coy, M.R., Boucias, D.G., Scharf, M.E., Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes (2009) Biotechnol. Biofuels, 2, p. 25
dc.descriptionTeeri, T.T., Crystalline cellulose degradation: new insight into the function of cellobiohydrolases (1997) Trends Biotechnol., 15, pp. 160-167
dc.descriptionTodaka, N., Inoue, T., Saita, K., Ohkuma, M., Nalepa, C.A., Lenz, M., Kudo, T., Moriya, S., Phylogenetic analysis of cellulolytic enzyme genes from representative lineages of termites and a related cockroach (2010) PLoS One, 5, pp. e8636
dc.descriptionTodaka, N., Moriya, S., Saita, K., Hondo, T., Kiuchi, I., Takasu, H., Ohkuma, M., Kudo, T., Environmental cDNA analysis of the genes involved in lignocellulose digestion in the symbiotic protist community of Reticulitermes speratus (2007) FEMS Microbiol. Ecol., 59, pp. 592-599
dc.descriptionTokuda, G., Watanabe, H., Hojo, M., Fujita, A., Makiya, H., Miyagi, M., Arakawa, G., Arioka, M., Cellulolytic environment in the midgut of the wood-feeding higher termite Nasutitermes takasagoensis (2012) J.Insect Physiol., 58, pp. 147-154
dc.descriptionUchima, C.A., Tokuda, G., Watanabe, H., Kitamoto, K., Arioka, M., Heterologous expression and characterization of a glucose-stimulated beta-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae (2011) Appl. Microbiol. Biotechnol., 89, pp. 1761-1771
dc.descriptionUchima, C.A., Tokuda, G., Watanabe, H., Kitamoto, K., Arioka, M., Heterologous expression in Pichia pastoris and characterization of an endogenous thermostable and high-glucose-tolerant beta-glucosidase from the termite Nasutitermes takasagoensis (2012) Appl. Environ. Microbiol., 78, pp. 4288-4293
dc.descriptionUchima, C.A., Tokuda, G., Watanabe, H., Kitamoto, K., Arioka, M., Anovel glucose-tolerant β-glucosidase from the salivary gland of the termite Nasutitermes takasagoensis (2013) J.Gen. Appl. Microbiol., 59, pp. 141-145
dc.descriptionvan den Brink, J., de Vries, R., Fungal enzyme sets for plant polysaccharide degradation (2011) Appl. Microbiol. Biotechnol., 91, pp. 1477-1492
dc.descriptionWallace, A.C., Laskowski, R.A., Thornton, J.M., LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions (1995) Protein Eng., 8, pp. 127-134
dc.descriptionWang, H., Squina, F., Segato, F., Mort, A., Lee, D., Pappan, K., Prade, R., High-temperature enzymatic breakdown of cellulose (2011) Appl. Environ. Microbiol., 77, pp. 5199-5206
dc.descriptionWarnecke, F., Luginbuhl, P., Ivanova, N., Ghassemian, M., Richardson, T.H., Stege, J.T., Cayouette, M., Leadbetter, J.R., Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite (2007) Nature, 450, pp. 560-565
dc.descriptionWatanabe, H., Tokuda, G., Animal cellulases (2001) Cell Mol. Life Sci., 58, pp. 1167-1178
dc.descriptionWatanabe, H., Tokuda, G., Cellulolytic systems in insects (2010) Annu. Rev. Entomol., 55, pp. 609-632
dc.descriptionWheeler, M.M., Tarver, M.R., Coy, M.R., Scharf, M.E., Characterization of four esterase genes and esterase activity from the gut of the termite Reticulitermes flavipes (2010) Arch. Insect Biochem. Physiol., 73, pp. 30-48
dc.descriptionWoodward, J., Lima, M., Lee, N.E., The role of cellulase concentration in determining the degree of synergism in the hydrolysis of microcrystalline cellulose (1988) Biochem. J., 255, pp. 895-899
dc.descriptionWu, Y., Kondrashkina, E., Kayatekin, C., Matthews, C.R., Bilsel, O., Microsecond acquisition of heterogeneous structure in the folding of a TIM barrel protein (2008) Proc. Natl. Acad. Sci. U S A, 105, pp. 13367-13372
dc.descriptionZhang, D., Allen, A.B., Lax, A.R., Functional analyses of the digestive beta-glucosidase of Formosan subterranean termites (Coptotermes formosanus) (2012) J.Insect Physiol., 58, pp. 205-210
dc.descriptionZhang, D., Lax, A.R., Bland, J.M., Allen, A.B., Characterization of a new endogenous endo-beta-1,4-glucanase of Formosan subterranean termite (Coptotermes formosanus) (2011) Insect Biochem. Mol. Biol., 41, pp. 211-218
dc.descriptionZhang, D., Lax, A.R., Bland, J.M., Yu, J., Fedorova, N., Nierman, W.C., Hydrolysis of filter-paper cellulose to glucose by two recombinant endogenous glycosyl hydrolases of Coptotermes formosanus (2010) Insect Sci., 17, pp. 245-252
dc.descriptionZhang, D., Lax, A.R., Raina, A.K., Bland, J.M., Differential cellulolytic activity of native-form and C-terminal tagged-form cellulase derived from Coptotermes formosanus and expressed in E. coli (2009) Insect Biochem. Mol. Biol., 39, pp. 516-522
dc.descriptionZhou, X., Kovaleva, E.S., Wu-Scharf, D., Campbell, J.H., Buchman, G.W., Boucias, D.G., Scharf, M.E., Production and characterization of a recombinant beta-1,4-endoglucanase (glycohydrolase family 9) from the termite Reticulitermes flavipes (2010) Arch. Insect Biochem. Physiol., 74, pp. 147-162
dc.descriptionZoete, V., Cuendet, M.A., Grosdidier, A., Michielin, O., SwissParam: a fast force field generation tool for small organic molecules (2011) J.Comput. Chem., 32, pp. 2359-2368
dc.languageen
dc.publisher
dc.relationInsect Biochemistry and Molecular Biology
dc.rightsfechado
dc.sourceScopus
dc.titleDeciphering The Synergism Of Endogenous Glycoside Hydrolase Families 1 And 9 From Coptotermes Gestroi
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución