dc.creatorSiles P.F.
dc.creatorDe Pauli M.
dc.creatorBof Bufon C.C.
dc.creatorFerreira S.O.
dc.creatorBettini J.
dc.creatorSchmidt O.G.
dc.creatorMalachias A.
dc.date2013
dc.date2015-06-25T19:17:50Z
dc.date2015-11-26T15:15:50Z
dc.date2015-06-25T19:17:50Z
dc.date2015-11-26T15:15:50Z
dc.date.accessioned2018-03-28T22:25:38Z
dc.date.available2018-03-28T22:25:38Z
dc.identifier
dc.identifierNanotechnology. , v. 24, n. 3, p. - , 2013.
dc.identifier9574484
dc.identifier10.1088/0957-4484/24/3/035702
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84871605201&partnerID=40&md5=aaad628c44ae5772f12747229e057da4
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89623
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89623
dc.identifier2-s2.0-84871605201
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1259103
dc.descriptionShort-period multilayers containing ultrathin atomic layers of Al embedded in titanium dioxide (TiO2) film - here called single-pulse doped multilayers - are fabricated by atomic layer deposition (ALD) growth methods. The approach explored here is to use Al atoms through single-pulsed deposition to locally modify the chemical environment of TiO2 films, establishing a chemical control over the resistive switching properties of metal/oxide/metal devices. We show that this simple methodology can be employed to produce well-defined and controlled electrical characteristics on oxide thin films without compound segregation. The increase in volume of the embedded Al2O3 plays a crucial role in tuning the conductance of devices, as well as the switching bias. The stacking of these oxide compounds and their use in electrical devices is investigated with respect to possible crystalline phases and local compound formation via chemical recombination. It is shown that our method can be used to produce compounds that cannot be synthesized a priori by direct ALD growth procedures but are of interest due to specific properties such as thermal or chemical stability, electrical resistivity or electric field polarization possibilities. The monolayer doping discussed here impacts considerably on the broadening of the spectrum of performance and technological applications of ALD-based memristors, allowing for additional degrees of freedom in the engineering of oxide devices. © 2013 IOP Publishing Ltd.
dc.description24
dc.description3
dc.description
dc.description
dc.descriptionLevi, B.G., (2007) Phys. Today, 60 (6), p. 23. , 10.1063/1.2754590 0031-9228
dc.descriptionEckstein, J.N., Oxide interfaces: Watch out for the lack of oxygen (2007) Nature Materials, 6 (7), pp. 473-474. , DOI 10.1038/nmat1944, PII NMAT1944
dc.descriptionSmadici, S., Lee, J.C.T., Wang, S., Abbamonte, P., Logvenov, G., Gozar, A., Cavellin, C.D., Bozovic, I., (2009) Phys. Rev. Lett., 102 (10). , 10.1103/PhysRevLett.102.107004 0031-9007 107004
dc.descriptionSchooley, J.F., Hosler, W.R., Cohen, M.L., (1964) Phys. Rev. Lett., 12 (17), p. 474. , 10.1103/PhysRevLett.12.474 0031-9007
dc.descriptionKoida, T., Lippmaa, M., Fukumura, T., Itaka, K., Matsumoto, Y., Kawasaki, M., Koinuma, H., (2002) Phys. Rev., 66 (14). , 10.1103/PhysRevB.66.144418 0163-1829 B 144418
dc.descriptionOgawa, N., Satoh, T., Ogimoto, Y., Miyano, K., (2008) Phys. Rev., 78 (21). , 10.1103/PhysRevB.78.212409 1098-0121 B 212409
dc.descriptionNanda, B.R.K., Satpathy, S., (2008) Phys. Rev. Lett., 101 (12). , 10.1103/PhysRevLett.101.127201 0031-9007 127201
dc.descriptionAhn, C.H., Tybell, T., Antognazza, L., Char, K., Hammond, R.H., Beasley, M.R., Fischer, O., Triscone, J.-M., Local, nonvolatile electronic writing of epitaxial Pb(Zr 0.52Ti0.48)O3/SrRuO=3 heterostructures (1997) Science, 276 (5315), pp. 1100-1103. , DOI 10.1126/science.276.5315.1100
dc.descriptionCohen Ronald, E., Origin of ferroelectricity in perovskite oxides (1992) Nature, 358 (6382), pp. 136-138. , DOI 10.1038/358136a0
dc.descriptionHaeni, J.H., Irvin, P., Chang, W., Uecker, R., Reiche, P., Li, Y.L., Choudhury, S., Schlom, D.G., Room-temperature ferroelectricity in strained SrTiO3 (2004) Nature, 430 (7001), pp. 758-761. , DOI 10.1038/nature02773
dc.descriptionWarusawithana, M.P., (2009) Science, 324 (5925), p. 367. , 10.1126/science.1169678 0036-8075
dc.descriptionCheng, G., (2011) Nature Nanotechnol., 6 (6), p. 343. , 10.1038/nnano.2011.56 1748-3387
dc.descriptionYang, J.J., Pickett, M.D., Li, X., Ohlberg, D.A.A., Stewart, D.R., Williams, R.S., (2008) Nature Nanotechnol., 3 (7), p. 429. , 10.1038/nnano.2008.160 1748-3387
dc.descriptionYang, J.J., Miao, F., Pickett, M.D., Ohlberg, D.A.A., Stewart, D.R., Lau, C.N., Williams, R.S., (2009) Nanotechnology, 20 (21). , 10.1088/0957-4484/20/21/215201 0957-4484 215201
dc.descriptionKwon, D.H., (2010) Nature Nanotechnol., 5 (2), p. 148. , 10.1038/nnano.2009.456 1748-3387
dc.descriptionSawa, A., Resistive switching in transition metal oxides (2008) Materials Today, 11 (6), pp. 28-36. , DOI 10.1016/S1369-7021(08)70119-6, PII S1369702108701196
dc.descriptionSiles, P.F., Archanjo, B.S., Baptista, D.L., Pimentel, V.L., Yang, J.J., Neves, B.R.A., Medeiros-Ribeiro, G., (2011) J. Appl. Phys., 110 (2). , 10.1063/1.3609065 0021-8979 024511
dc.descriptionXue, D., Betzler, K., Hesse, H., (2000) J. Phys.: Condens. Matter, 12 (13), p. 3113. , 10.1088/0953-8984/12/13/319 0953-8984
dc.descriptionYeo, Y.C., King, T.J., Hu, C., (2002) Appl. Phys. Lett., 81 (11), p. 2091. , 10.1063/1.1506941 0003-6951
dc.descriptionTakemura, K., Sakuma, T., Miyasaka, Y., (1994) Appl. Phys. Lett., 64 (22), p. 2967. , 10.1063/1.111396 0003-6951
dc.descriptionTorrezan, A.C., Strachan, J.P., Medeiros-Ribeiro, G., Williams, R.S., (2011) Nanotechnology, 22 (48). , 10.1088/0957-4484/22/48/485203 0957-4484 485203
dc.descriptionHur, J., Kim, K.M., Chang, M., Lee, S.R., Lee, D., Lee, C.B., Lee, M., Chung, U., (2012) Nanotechnology, 23 (22). , 10.1088/0957-4484/23/22/225702 0957-4484 225702
dc.descriptionYoon, K.J., Lee, M.H., Kim, G.H., Song, S.J., Seok, J.Y., Han, S., Yoon, J.H., Hwang, C.S., (2012) Nanotechnology, 23 (18). , 10.1088/0957-4484/23/18/185202 0957-4484 185202
dc.descriptionZhang, L., Jiang, H.C., Liu, C., Dong, J.W., Chow, P., Annealing of Al2O3 thin films prepared by atomic layer deposition (2007) Journal of Physics D: Applied Physics, 40 (12), pp. 3707-3713. , DOI 10.1088/0022-3727/40/12/025, PII S0022372707450616, 025
dc.descriptionLee, S.W., (2011) Chem. Mater., 23 (8), p. 2227. , 10.1021/cm2002572 0897-4756
dc.descriptionKukli, K., Ritala, M., Pore, V., Leskelä, M., Sajavaara, T., Hegde, R.I., Gilmer, D.C., Aspinall, H.C., (2006) Chem. Vapor Depos., 12 (2-3), p. 158. , 10.1002/cvde.200506388 0948-1907
dc.descriptionNg, C.J.W., Gao, H., Tan, T.T.Y., (2008) Nanotechnology, 19 (44). , 10.1088/0957-4484/19/44/445604 0957-4484 445604
dc.descriptionKim, S.K., Hwang, C.S., (2004) J. Appl. Phys., 96 (4), p. 2323. , 10.1063/1.1769090 0021-8979
dc.descriptionKundu, M., Miyata, N., Ichikawa, M., (2001) Appl. Phys. Lett., 78 (11), p. 1517. , 10.1063/1.1355294 0003-6951
dc.descriptionGroner, M.D., Elam, J.W., Fabreguette, F.H., George, S.M., Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates (2002) Thin Solid Films, 413 (1-2), pp. 186-197. , DOI 10.1016/S0040-6090(02)00438-8, PII S0040609002004388
dc.descriptionDiebold, U., (2003) Surf. Sci. Rep., 48 (5-8), p. 53. , 10.1016/S0167-5729(02)00100-0 0167-5729
dc.descriptionStamate, M.D., (2000) Thin Solid Films, 372 (1-2), p. 246. , 10.1016/S0040-6090(00)01027-0 0040-6090
dc.descriptionPang, C.L., Bikondoa, O., Humphrey, D.S., Papageorgiou, A.C., Cabailh, G., Ithnin, R., Chen, Q., Thornton, G., Tailored TiO2(110) surfaces and their reactivity (2006) Nanotechnology, 17 (21), pp. 5397-5405. , DOI 10.1088/0957-4484/17/21/019, PII S0957448406285362, 019
dc.descriptionZhao, Z., Li, Z., Zou, Z., (2010) J. Phys.: Condens. Matter, 22 (17). , 10.1088/0953-8984/22/17/175008 0953-8984 175008
dc.descriptionSimmons, J.G., (1963) J. Appl. Phys., 34 (9), p. 2581. , 10.1063/1.1729774 0021-8979
dc.descriptionHorowitz, G., Fichou, D., Peng, X.D., Delannoy, P., (1990) J. Phys. France, 51 (13), p. 1489. , 10.1051/jphys:0199000510130148900 0302-0738
dc.descriptionDelannoy, P., (1981) Mater. Sci., 7, pp. 13-21
dc.descriptionJogi, I., Kukli, K., Kemell, M., Ritala, M., Leskela, M., Electrical characterization of Alx Tiy Oz mixtures and Al2 O3 -Ti O2 - Al2 O3 nanolaminates (2007) Journal of Applied Physics, 102 (11), p. 114114. , DOI 10.1063/1.2822460
dc.descriptionUnno, H., Sato, Y., Toh, S., Yoshinaga, N., Matsumura, S., (2010) J. Electron Microsc., 59 (S1), p. 107. , 10.1093/jmicro/dfq037 0022-0744
dc.descriptionKuo, D.H., Tzeng, K.H., (2004) Thin Solid Films, 460 (1-2), p. 327. , 10.1016/j.tsf.2004.02.026 0040-6090
dc.descriptionParratt, L.G., (1954) Phys. Rev., 95 (2), p. 359. , 10.1103/PhysRev.95.359 0031-899X
dc.descriptionStrukov, D.B., Williams, R.S., (2009) Appl. Phys., 94 (3), p. 515. , 10.1007/s00339-008-4975-3 0947-8396 A
dc.descriptionYang, J.J., Kobayashi, N.P., Strachan, J.P., Zhang, M.X., Ohlberg, D.A.A., Pickett, M.D., Li, Z., Williams, R.S., (2011) Chem. Mater., 23 (2), p. 123. , 10.1021/cm1020959 0897-4756
dc.descriptionEllingham, H.J.T., (1944) J. Soc. Chem. Indust., 63 (5), p. 125. , 10.1002/jctb.5000630501 0368-4075
dc.languageen
dc.publisher
dc.relationNanotechnology
dc.rightsfechado
dc.sourceScopus
dc.titleTuning Resistive Switching On Single-pulse Doped Multilayer Memristors
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución