dc.creatorCecilio D.L.
dc.creatorDevloo P.R.B.
dc.creatorGomes S.M.
dc.creatordos Santos E.R.S.
dc.creatorShauer N.
dc.date2015
dc.date2015-06-25T12:54:18Z
dc.date2015-11-26T15:15:49Z
dc.date2015-06-25T12:54:18Z
dc.date2015-11-26T15:15:49Z
dc.date.accessioned2018-03-28T22:25:37Z
dc.date.available2018-03-28T22:25:37Z
dc.identifier
dc.identifierComputers And Geotechnics. Elsevier Ltd, v. 64, n. , p. 1 - 9, 2015.
dc.identifier0266352X
dc.identifier10.1016/j.compgeo.2014.10.013
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84910603093&partnerID=40&md5=c87c385ea62f8f27255d7adc967c9ac5
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85575
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85575
dc.identifier2-s2.0-84910603093
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1259098
dc.descriptionA simplified methodology is proposed for elastoplastic calculations which holds for associative models. It is based on the representation of the elastoplastic model based on a rotation of the principal stresses and the fact that, in such system of coordinates, the direction that minimizes the square of a distance between a trial stress and the plastic surface has the same direction as the plastic deformation evolution. Such an approach allows for the elastoplastic calculation of complex models to be simpler and more efficient computationally. The proposed methodology is verified by the application to the elastoplastic model of Sandler-DiMaggio.
dc.description64
dc.description
dc.description1
dc.description9
dc.descriptionSouza Neto, E., Peric, D., Owen, D.R.J., (2008) Computational Methods for Plasticity, , John Wiley & Sons Ltd
dc.descriptionChen, W.F., Han, D.J., (1988) Plasticity for Structural Engineers, , Springer-Verlag
dc.descriptionDiMaggio, F.L., Sandler, I., Material model for granular soils (1971) Eng Mech Div, 97 (3), pp. 935-950
dc.descriptionDevloo, P.R.B., PZ: an object oriented environment for scientific programming (1997) Comput Methods Appl Mech Eng, 150 (1-4), pp. 133-153
dc.descriptionDevloo, P.R.B., Object oriented tools for scientific computing (2000) Eng Comput, 46 (2), pp. 203-214
dc.descriptionLainé, E., Vallée, C., Fortuné, D., Nonlinear isotropic constitutive laws: choice of the three invariants, convex potentials and constitutive inequalities (1999) Int J Eng Sci, 37 (15), pp. 1927-1941
dc.descriptionBorja, R.I., (2012) Plasticity Modeling & Computation, , Springer Science & Business Media
dc.descriptionArmero, F., Pérez-Foguet, A., On the formulation of closest-point projection algorithms in elastoplasticity - Part I: The variational structure (2002) Int J Numer Methods Eng, 53 (2), pp. 297-329
dc.descriptionArmero, F., Pérez-Foguet, A., On the formulation of closest-point projection algorithms in elastoplasticity - Part II: Globally convergent schemes (2002) Int J Numer Methods Eng, 53 (2), pp. 331-374
dc.descriptionFoster, C.D., Regueiro, R.A., Fossum, A.F., Borja, R.I., Implicit numerical integration of a three-invariant, isotropic/kinematic hardening cap plasticity model for geomaterials (2005) Comput Methods Appl Mech Eng, 194, pp. 5109-5138
dc.descriptionFossum, A.F., Fredrich, J.T., Cap plasticity models and compactive and dilatant pre-failure deformation (2000), 4th North American Rock Mechanics Symposium, Seatle, United States of AmericaFossum, A.F., Brannon, R.M., The Sandia Geomodel: Theory and Users Guide (2004), SAND Report, Sandia National LaboratoriesSandler, I.S., Rubin, D., An algorithm and a modular subroutine for the cap model (1979) Int J Numer Anal Methods Geomech, 3 (2), pp. 173-186
dc.languageen
dc.publisherElsevier Ltd
dc.relationComputers and Geotechnics
dc.rightsfechado
dc.sourceScopus
dc.titleAn Improved Numerical Integration Algorithm For Elastoplastic Constitutive Equations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución