dc.creatorLima L.H.F.
dc.creatorSerpa V.I.
dc.creatorRosseto F.R.
dc.creatorSartori G.R.
dc.creatorde Oliveira Neto M.
dc.creatorMartinez L.
dc.creatorPolikarpov I.
dc.date2013
dc.date2015-06-25T19:17:59Z
dc.date2015-11-26T15:15:48Z
dc.date2015-06-25T19:17:59Z
dc.date2015-11-26T15:15:48Z
dc.date.accessioned2018-03-28T22:25:36Z
dc.date.available2018-03-28T22:25:36Z
dc.identifier
dc.identifierCellulose. , v. 20, n. 4, p. 1573 - 1585, 2013.
dc.identifier9690239
dc.identifier10.1007/s10570-013-9933-3
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84881023746&partnerID=40&md5=6eb4bbef88e26c681ae1d6dd0d462f36
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89651
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89651
dc.identifier2-s2.0-84881023746
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1259094
dc.descriptionCellobiohydrolases hydrolyze cellulose releasing cellobiose units. They are very important for a number of biotechnological applications, such as, for example, production of cellulosic ethanol and cotton fiber processing. The Trichoderma cellobiohydrolase I (CBH1 or Cel7A) is an industrially important exocellulase. It exhibits a typical two domain architecture, with a small C-terminal cellulose-binding domain and a large N-terminal catalytic core domain, connected by an O-glycosylated linker peptide. The mechanism by which the linker mediates the concerted action of the two domains remains a conundrum. Here, we probe the protein shape and domain organization of the CBH1 of Trichoderma harzianum (ThCel7A) by small angle X-ray scattering (SAXS) and structural modeling. Our SAXS data shows that ThCel7A linker is partially-extended in solution. Structural modeling suggests that this linker conformation is stabilized by inter- and intra-molecular interactions involving the linker peptide and its O-glycosylations. © 2013 Springer Science+Business Media Dordrecht.
dc.description20
dc.description4
dc.description1573
dc.description1585
dc.descriptionAbuja, P., Pilz, I., Claeyssens, M., Tomme, P., Domain-structure of cellobiohydrolase-II as studied by small-angle X-ray-scattering-close resemblance to cellobiohydrolase-I (1988) Biochem Biophys Res Commun, 156 (1), pp. 180-185. , doi:10.1016/S0006-291X(88)80821-0
dc.descriptionArnold, K., Bordoli, L., Kopp, J., Schwede, T., The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling (2006) Bioinformatics, 22 (2), pp. 195-201. , doi:10.1093/bioinformatics/bti770
dc.descriptionBeckham, G.T., Bomble, Y.J., Matthews, J.F., Taylor, C.B., Resch, M.G., Yarbrough, J.M., Decker, S.R., Crowley, M.F., The O-glycosylated linker from the Trichoderma reesei family 7 cellulase is a flexible (2010) Disordered Protein Biophys J, 99 (11), pp. 3773-3781. , doi:10.1016/j.bpj.2010.10.032
dc.descriptionBradford, M., Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding (1976) Anal Biochem, 72 (1-2), pp. 248-254. , doi:10.1006/abio.1976.9999
dc.descriptionCantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V., Henrissat, B., The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics (2009) Nucleic Acids Res, 37, pp. D233-D238. , doi:10.1093/nar/gkn663
dc.descriptionCase, D.A., Darden, T.A., Chealtham, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Merz, K.M., (2010), Amber 11, Single edn, Berkeley: Universtity of California PressCornell, W., Cieplak, P., Bayly, C., Gould, I., Merz, K., Ferguson, D., Spellmeyer, D., Kollman, P., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (vol 117, pg 5179, 1995) (1996) J Am Chem Soc, 118 (9), p. 2309. , doi:10.1021/ja955032e
dc.descriptionDivine, M., Stahlberg, J., Reinikanen, T., Ruohonen, L., Petterson, G., Knowles, J.K., Teeri, T.T., Jones, T.A., The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei (1994) Science, 265 (5171), pp. 524-528
dc.descriptionFischer, H., de Oliveira Neto, M., Napolitano, H.B., Polikarpov, I., Craievich, A.F., Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale (2010) J Appl Crystallogr, 43 (PART 1), pp. 101-109. , doi:10.1107/S0021889809043076
dc.descriptionGuinier, A., Fornet, G., (1995) Small Angle Scattering of X-Rays, , 1st edn., London: Wiley
dc.descriptionHammersley, A., Svensson, S., Hanfland, M., Fitch, A., Hausermann, D., Two-dimensional detector software: from real detector to idealised image or two-theta scan (1996) High Pressure Res, 14 (4-6), pp. 235-248. , doi:10.1080/08957959608201408
dc.descriptionHammersley, A., Brown, K., Burmeister, W., Claustre, L., Gonzalez, A., McSweeney, S., Mitchell, E., Thompson, A., Calibration and application of an X-ray image intensifier/charge-coupled device detector for monochromatic macromolecular crystallography (1997) J Synchrot Radiat, 4 (PART 2), pp. 67-77. , doi:10.1107/S0909049596015087
dc.descriptionHarrison, M., Wathugala, I., Tenkanen, M., Packer, N., Nevalainen, K., Glycosylation of acetylxylan esterase from Trichoderma reesei (2002) Glycobiology, 12 (4), pp. 291-298. , doi:10.1093/glycob/12.4.291
dc.descriptionHayn, M., Esterbauer, H., Separation and partial characterization of Trichoderma-reesei cellulase by fast chromatofocusing (1985) J Chromat, 329 (3), pp. 379-387. , doi:10.1016/S0021-9673(01)81944-0
dc.descriptionHorn, S.J., Vaaje-Kolstad, G., Westereng, B., Eijsink, V.G.H., Novel enzymes for the degradation of cellulose (2012) Biotechnol Biofuels, 5, p. 45. , doi:10.1186/1754-6834-5-45
dc.descriptionHornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., Comparison of multiple amber force fields and development of improved protein backbone parameters (2006) Proteins, 65 (3), pp. 712-725. , doi:10.1002/prot.21123
dc.descriptionHumphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J Mol Graph, 14 (1), pp. 33-38. , doi:10.1016/0263-7855(96)00018-5
dc.descriptionIgarashi, K., Koivula, A., Wada, M., Kimura, S., Penttila, M., Samejima, M., High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase i on crystalline cellulose (2009) J Biol Chem, 284 (52), pp. 36186-36190. , doi:10.1074/jbc.M109.034611
dc.descriptionJorgensen, W., Chandrasekhar, J., Madura, J., Impey, R., Klein, M., Comparison of simple potential functions for simulating liquid water (1983) J Chem Phys, 79 (2), pp. 926-935. , doi:10.1063/1.445869
dc.descriptionKalra, M., Sandhu, D., Cellulase production and its localization in Trichoderma-harzianum (1986) Folia Microbiol, 31 (4), pp. 303-308. , doi:10.1007/BF02926955
dc.descriptionKirschner, K.N., Yongye, A.B., Tschampel, S.M., Gonzalez-Outeirino, J., Daniels, C.R., Foley, B.L., Woods, R.J., GLYCAM06: a generalizable biomolecular force field, carbohydrates (2008) J Comput Chem, 29 (4), pp. 622-655. , doi:10.1002/jcc.20820
dc.descriptionKozin, M.B., Svergun, D.I., Automated matching of highandlow-resolution structural models (2001) J Appl Crystallogr, 34, pp. 33-41
dc.descriptionKraulis, P., Clore, G., Nilges, M., Jones, T., Pettersson, G., Knowles, J., Gronenborn, A., Determination of the 3-dimensional solution structure of the c-terminal domain of Cellobiohydrolase-I from Trichoderma-reesei - a study using nuclear magnetic-resonance and hybrid distance geometry dynamical simulated annealing (1989) Biochemistry, 28 (18), pp. 7241-7257. , doi:10.1021/bi00444a016
dc.descriptionLaemmli, U., Cleavage of structural proteins during assembly of head of bacteriophage-T4 (1970) Nature, 227 (5259), p. 680. , doi:10.1038/227680a0
dc.descriptionLee, H., Brown, R., A comparative structural characterization of two cellobiohydrolases from Trichoderma reesei: a high resolution electron microscopy study (1997) J Biotechnol, 57 (1-3), pp. 127-136. , doi:10.1016/S0168-1656(97)00111-9
dc.descriptionLi, X., Hj, Y., Roy, B., Wang, D., Wf, Y., Lj, J., Park, E.Y., Yg, M., The most stirring technology in future: cellulase enzyme and biomass utilization (2009) Afr J Biotechnol, 8 (11), pp. 2418-2422
dc.descriptionMatthews, J., Skopec, C., Mason, P., Zuccato, P., Torget, R., Sugiyama, J., Himmel, M., Brady, J., Computer simulation studies of microcrystalline cellulose I beta (2006) Carbohydr Res, 341 (1), pp. 138-152. , doi:10.1016/j.carres.2005.09.028
dc.descriptionMattinen, M., Kontteli, M., Kerovuo, J., Linder, M., Annila, A., Lindeberg, G., Reinikainen, T., Drakenberg, T., Three-dimensional structures of three engineered cellulose-binding domains of cellobiohydrolase I from Trichoderma reesei (1997) Protein Sci, 6 (2), pp. 294-303
dc.descriptionMomeni, M.H., Payne, C.M., Hansson, H., Mikkelsen, N.E., Svedberg, J., Engstrom, A., Sandgren, M., Stahlberg, J., Structural, biochemical, and computational characterization of the glycoside hydrolase family 7 cellobiohydrolase of the tree-killing fungus Heterobasidion irregulare (2013) J Biol Chem, 22 (8), pp. 5861-5872. , doi: 10. 1074/jbc. M112. 440891
dc.descriptionNummi, M., Nikupaavola, M., Lappalainen, A., Enari, T., Raunio, V., Cellobiohydrolase from Trichoderma-reesei (1983) Biochem J, 215 (3), pp. 677-683
dc.descriptionPetoukhov, M., Svergun, D., Global rigid body modeling of macromolecular complexes against small-angle scattering data (2005) Biophys J, 89 (PART 2), pp. 1237-1250. , doi:10.1529/biophysj.105.064154
dc.descriptionPhillips, J., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Schulten, K., Scalable molecular dynamics with NAMD (2005) J Comput Chem, 26 (16), pp. 1781-1802. , doi:10.1002/jcc.20289
dc.descriptionPilz, I., Schwarz, E., Kilburn, D., Miller, R., Warren, R., Gilkes, N., The tertiary structure of a bacterial cellulase determined by small-angle X-ray-scattering analysis (1990) Biochem J, 271 (1), pp. 277-280
dc.descriptionPingali, S.V., O'Neill, H.M., McGaughey, J., Urban, V.S., Rempe, C.S., Petridis, L., Smith, J.C., Heller, W.T., Small angle neutron scattering reveals pH-dependent conformational changes in Trichoderma reesei cellobiohydrolase I implications for enzymatic activity (2011) J Biol Chem, 286 (37), pp. 32801-32809. , doi:10.1074/jbc.M111.263004
dc.descriptionReceveur, V., Czjzek, M., Schulein, M., Panine, P., Henrissat, B., Dimension, shape, and conformational flexibility of a two domain fungal cellulase in solution probed by small angle X-ray scattering (2002) J Biol Chem, 277 (43), pp. 40887-40892. , doi:10.1074/jbc.M205404200
dc.descriptionRoussos, S., Raimbault, M., Cellulose hydrolysis by fungi. 1. Screening of cellulolytic strains (1982) Ann Microb, B133 (3), pp. 455-464
dc.descriptionRoy, A., Kucukural, A., Zhang, Y., I-TASSER: a unified platform for automated protein structure and function prediction (2010) Nat Protoc, 5 (4), pp. 725-738. , doi:10.1038/nprot.2010.5
dc.descriptionSchmuck, M., Pilz, I., Hayn, M., Esterbauer, H., Investigation of cellobiohydrolase from Trichoderma-reesei by small-angle X-ray-scattering (1986) Biotechnol Lett, 8 (6), pp. 397-402. , doi:10.1007/BF01026739
dc.descriptionSeeber, M., Cecchini, M., Rao, F., Settanni, G., Caflisch, A., Wordom: a program for efficient analysis of molecular dynamics simulations (2007) Bioinformatics, 23 (19), pp. 2625-2627. , doi:10.1093/bioinformatics/btm378
dc.descriptionSerpa, V.I., Polikarpov, I., Enzymes in bioenergy (2011) Routes to Cellulosic Ethanol-Part II, , 10.1007/978-0-387-92740-4_7, M. S. Buckeridge and G. H. H. Goldman (Eds.), New York: Springer
dc.descriptionSrisodsuk, M., Reinikainen, T., Penttila, M., Teeri, T., Role of the interdomain linker peptide of Trichoderma-reesei cellobiohydrolase-I in its interaction with crystalline cellulose (1993) J Biol Chem, 268 (28), pp. 20756-20761
dc.descriptionStahlberg, J., Johansson, G., Pettersson, G., A new model for enzymatic-hydrolysis of cellulose based on the 2-domain structure of cellobiohydrolase-I (1991) Bio-Technology, 9 (3), pp. 286-290. , doi:10.1038/nbt0391-286
dc.descriptionStals, I., Sandra, K., Geysens, S., Contreras, R., van Beeumen, J., Claeyssens, M., Factors influencing glycosylation of Trichoderma reesei cellulases. I: postsecretorial changes of the O- and N-glycosylation pattern of Cel7A (2004) Glycobiology, 14 (8), pp. 713-724. , doi:10.1093/glycob/cwh080
dc.descriptionSvergun, D., Mathematical-methods in small-angle scattering data-analysis (1991) J Appl Crystallogr, 24 (PART 5), pp. 485-492. , doi:10.1107/S0021889891001280
dc.descriptionSvergun, D., Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing (1999) Biophys J, 76 (6), pp. 2879-2886. , doi:10.1016/S0006-495(99)77443-6
dc.descriptionSvergun, D., Barberato, C., Koch, M., CRYSOL-a program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates (1995) J Appl Crystallogr, 28 (PART 6), pp. 768-773. , doi:10.1107/S0021889895007047
dc.descriptionSvergun, D., Petoukhov, M., Koch, M., Determination of domain structure of proteins from X-ray solution scattering (2001) Biophys J, 80 (6), pp. 2946-2953
dc.descriptionTextor, L.C., Colussi, F., Silveira, R.L., Serpa, V., Mello, B.L., Muniz, J.R.C., Squina, F.M., Polikarpov, I., (2012) FEBS J, 280 (1), pp. 56-69. , doi:10.1111/febs.12049
dc.descriptionTing, C.L., Makarov, D.E., Wang, Z.G., A kinetic model for the enzymatic action of cellulase (2009) J Phys Chem B, 113 (14), pp. 4970-4977. , doi:10.1021/jp810625k
dc.descriptionVangunsteren, W., Berendsen, H., Algorithms for macromolecular dynamics and constraint dynamics (1977) Mol Phys, 34 (5), pp. 1311-1327. , doi:10.1080/00268977700102571
dc.descriptionVantilbeurgh, H., Tomme, P., Claeyssens, M., Bhikhabhai, R., Pettersson, G., Limited proteolysis of the cellobiohydrolase I from Trichoderma-reesei-separation of functional domains (1986) FEBS Lett, 204 (2), pp. 223-227. , doi:10.1016/0014-5793(86)80816-X
dc.descriptionViolot, S., Aghajari, N., Czjzek, M., Feller, G., Sonan, G., Gouet, P., Gerday, C., Receveur-Brechot, V., Structure of a full length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by X-ray diffraction and small angle X-ray scattering (2005) J Mol Biol, 348 (5), pp. 1211-1224. , doi:10.1016/j.jmb.2005.03.026
dc.descriptionZhang, Y., Template-based modeling and free modeling by I-TASSER in CASP7 (2007) Proteins, 69 (8), pp. 108-117. , doi:10.1002/prot.21702
dc.descriptionZhong, L., Xie, J., Investigation of the effect of glycosylation on human prion protein by molecular dynamics (2009) J Biomol Struct Dyn, 26 (5), pp. 525-533
dc.descriptionZhong, L., Matthews, J.F., Crowley, M.F., Rignall, T., Talon, C., Cleary, J.M., Walker, R.C., Brady, J.W., Interactions of the complete cellobiohydrolase I from Trichodera reesei with microcrystalline cellulose I beta (2008) Cellulose, 15 (2), pp. 261-273. , doi:10.1007/s10570-007-9186-0
dc.languageen
dc.publisher
dc.relationCellulose
dc.rightsfechado
dc.sourceScopus
dc.titleSmall-angle X-ray Scattering And Structural Modeling Of Full-length: Cellobiohydrolase I From Trichoderma Harzianum
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución