dc.creatorCarvalho A.F.A.
dc.creatorNeto P.D.O.
dc.creatorda Silva D.F.
dc.creatorPastore G.M.
dc.date2013
dc.date2015-06-25T19:17:56Z
dc.date2015-11-26T15:15:47Z
dc.date2015-06-25T19:17:56Z
dc.date2015-11-26T15:15:47Z
dc.date.accessioned2018-03-28T22:25:35Z
dc.date.available2018-03-28T22:25:35Z
dc.identifier
dc.identifierFood Research International. , v. 51, n. 1, p. 75 - 85, 2013.
dc.identifier9639969
dc.identifier10.1016/j.foodres.2012.11.021
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84871774361&partnerID=40&md5=e8e23486c58d7d2148febdde313c589e
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89638
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89638
dc.identifier2-s2.0-84871774361
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1259090
dc.descriptionCurrently, there is worldwide interest in the technological use of agro-industrial residues as a renewable source of food and biofuels. Lignocellulosic materials (LCMs) are a rich source of cellulose and hemicellulose. Hemicellulose is rich in xylan, a polysaccharide used to develop technology for producing alcohol, xylose, xylitol and xylo-oligosaccharides (XOSs). The XOSs are unusual oligosaccharides whose main constituent is xylose linked by β 1-4 bonds. The XOS applications described in this paper highlight that they are considered soluble dietary fibers that have prebiotic activity, favoring the improvement of bowel functions and immune function and having antimicrobial and other health benefits. These effects open a new perspective on potential applications for animal production and human consumption. The raw materials that are rich in hemicellulose include sugar cane bagasse, corncobs, rice husks, olive pits, barley straw, tobacco stalk, cotton stalk, sunflower stalk and wheat straw. The XOS-yielding treatments that have been studied include acid hydrolysis, alkaline hydrolysis, auto-hydrolysis and enzymatic hydrolysis, but the breaking of bonds present in these compounds is relatively difficult and costly, thus limiting the production of XOS. To obviate this limitation, a thorough evaluation of the most convenient methods and the opportunities for innovation in this area is needed. Another challenge is the screening and taxonomy of microorganisms that produce the xylanolytic complex and enzymes and reaction mechanisms involved. Among the standing out microorganisms involved in lignocellulose degradation are Trichoderma harzianum, Cellulosimicrobium cellulans, Penicillium janczewskii, Penicillium echinulatu, Trichoderma reesei and Aspergillus awamori. The enzyme complex predominantly comprises endoxylanase and enzymes that remove hemicellulose side groups such as the acetyl group. The complex has low β-xylosidase activities because β-xylosidase stimulates the production of xylose instead of XOS; xylose, in turn, inhibits the enzymes that produce XOS. The enzymatic conversion of xylan in XOS is the preferred route for the food industries because of problems associated with chemical technologies (e.g., acid hydrolysis) due to the release of toxic and undesired products, such as furfural. The improvement of the bioprocess for XOS production and its benefits for several applications are discussed in this study. © 2012 Elsevier Ltd.
dc.description51
dc.description1
dc.description75
dc.description85
dc.descriptionAachary, A.A., Prapulla, S.G., Value addition to corncob: Production and characterization of xylo-oligosaccharides from alkali pretreated lignin-saccharide complex using Aspergillus oryzae MTCC 5154 (2009) Bioresource Technology, 100, pp. 991-995
dc.descriptionAbdel-Sater, M.A., El-Said, A.H.M., Xylan-decomposing fungi and xylanolytic activity in agricultural and industrial wastes (2001) International Biodeterioration & Biodegradation, 47, pp. 15-21
dc.descriptionAi, Z., Jiang, Z., Li, L., Deng, W., Kusakabe, I., Li, H., Immobilization of Streptomyces olivaceoviridis E-86 xylanase on Eudragit S-100 for xylo-oligosaccharide production (2005) Process Biochemistry, 40, pp. 2707-2714
dc.descriptionAkpinar, O., Erdogan, K., Bakir, U., Yilmaz, L., Comparison of acid and enzymatic hydrolysis of tobacco stalk for preparation of xylo-oligosaccharides (2010) Food Science and Technology, 43, pp. 119-125
dc.descriptionAkpinar, O., Erdogan, K., Bostanci, S., Enzymatic production of xylo-oligosaccharide from selected agricultural wastes (2009) Food and Bioproducts Processing, 87, pp. 145-151
dc.descriptionAkpinar, O., Erdogan, K., Bostanci, S., Production of xylo-oligosaccharides by controlled acid hydrolysis of lignocellulosic materials (2009) Carbohydrate Research, 344, pp. 660-666
dc.descriptionAntoine, A.A., Jacqueline, D., Thonart, P., Xylanase production by Penicillium canescens on soya oil cake in solid state fermentation (2010) Applied Biochemistry and Biotechnology, 160, pp. 50-62
dc.descriptionBadhan, A.K., Chadha, B.S., Saini, H.S., Purification of the alkalophilic xylanases from Myceliophthora sp. IMI387099 using cellulose-binding domain as an affinity tag. World (2007) Journal Microbiology Biotechnology, 24, pp. 973-981
dc.descriptionBalakrishnan, H., Dutta-Choudhary, M.D., Srinivasan, M.C., Rele, M.V., Cellulase-free xylanase production from an alkalophilic Bacillus species (1992) World Journal of Microbiology and Biotechnology, 8, pp. 627-631
dc.descriptionBastawde, K.B., Xylan structure, microbial xylanases, and their mode of action (1992) World Journal Microbiolology Biotechnology, 8, pp. 353-368
dc.descriptionBeg, Q.K., Kapoor, M., Mahajan, L., Hoondal, G.S., Microbial xylanases and their industrial applications: A review (2001) Applied Microbiology and Biotechnology, 56, pp. 326-338
dc.descriptionBelancic, A., Scarpa, J., Peirano, A., Diaz, R., Steiner, J., Eyzaguirre, J., Penicillium purpurogenum produces several xylanases: Purification and properties of two of the enzymes (1995) Journal of Biotechnology, 41, pp. 71-79
dc.descriptionBhat, M.K., Oligosaccharides as functional food ingredients and their role in improving the nutritional quality of human food and health (1998) Recent Research Developments in Agricultural & Food Chemistry, 2, pp. 787-802
dc.descriptionBiely, P., Microbial xylanolytic systems (1985) Trends in Biotechnology, 3, pp. 286-290
dc.descriptionBiely, P., Vršanská, M., Tenkanen, M., Kluepfel, D., Endo-β-1,4-xylanase families: differences in catalytic proprieties (1997) Journal of Biotechnology, 57, pp. 151-166
dc.descriptionBlaut, M., Relationship of prebiotics and food to intestinal microflora (2002) European Journal of Nutrition, 41, pp. 11-16
dc.descriptionBotella, C., Ory, I., Webb, C., Cantero, D., Blandino, A., Hydrolytic enzyme production by Aspergillus awamori on grape pomace (2005) Biochemical Engineering Journal, 26, pp. 100-106
dc.descriptionBrezoen, A., Van Haren, W., Hanekamp, J.C., Emergence of a debate. AGPs and public health. Human health and antibiotic growth promoters (AGPs): Reassessing the risk (1999) Heidelberg Appeal Nederland Foundation, 131
dc.descriptionBrienzo, M., Carvalho, W., Milagres, A.M.F., Xylo-oligosaccharides production from alkali-pretreated sugarcane bagasse Using xylanases from Thermoascus aurantiacus (2010) Applied Biochemistry and Biotechnology, 162, pp. 1195-1205
dc.descriptionBrienzo, M., Siqueira, A.F., Milagres, A.M.F., Search for optimum conditions of sugarcane bagasse hemicellulose extraction (2009) Biochemical Engineering Journal, 46, pp. 199-204
dc.descriptionCamassola, M., Dillon, A.J.P., Biological pretreatment of sugar cane bagasse for the production of cellulases and xylanases by Penicillium echinulatum (2009) Industrial Crops and Products, 29, pp. 642-647
dc.descriptionCampbell, J.M., Fahey, G.C., Wolf, B.W., Selected indigestible oligosaccharides affect large bowel mass and fecal short-chain fatty acids, pH and microflora in rats (1997) The Journal of Nutrition, 127, pp. 130-136
dc.descriptionCaparrós, S., Ariza, J., Garrote, G., López, F., Díaz, M.J., Optimization of Paulownia fortunei autohydrolysis-organosolv pulping as a source of xylooligomers and cellulose pulp (2007) Industrial and Engineering Chemistry Research, 46, pp. 623-631
dc.descriptionCarvalho, A.F., Oliva-Neto, P., Pastore, G.M., Enzymatic production of xylooligosaccharide from alkali-pretreated sugarcane bagasse (2012) 16th World Congress of Food Science and Technology, Foz do Iguaçu, Brazil
dc.descriptionCarvalho, A.F., Oliva-Neto, P., Pastore, G.M., Production of xylo-oligosaccharides by hemicellulose extracted from sugar cane bagasse (2012) Congress of Microbiology. Santos, Brazil
dc.descriptionChapla, D., Pandit, P., Shah, A., Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics (2012) Bioresource Technology, 115, pp. 215-221
dc.descriptionChoque Delgado, G.T., Tamashiro, W.M.S.C., Junior, M.R.M., Moreno, Y.M.F., Pastore, G.M., The putative effects of prebiotics as immunomodulatory agents (2011) Food Research International, 40, pp. 3167-3173
dc.descriptionChristopher, L., Bissoon, S.S., Singh, S., Szendefy, J., Szakacs, G., Bleach-enhancing abilities of Thermomyces lanuginosus xylanases produced by solid state fermentation (2005) Process Biochemistry, 40, pp. 3230-3235
dc.descriptionChristov, L.P., Szakacs, G., Balakrishnan, H., Production, partial characterization and use of fungal cellulase-free xylanases in pulp bleaching (1999) Process Biochemistry, 34, pp. 511-517
dc.descriptionChung, Y.C., Hsu, C.K., Ko, C.Y., Chan, Y.C., Dietary intake of xylooligosaccharides improves the intestinal microbiota, fecal moisture, and pH value in the elderly (2007) Nutrition Research, 27, pp. 756-761
dc.descriptionCollins, T., Gerday, C., Feller, G., Xylanases, xylanase families and extremophilic xylanases (2005) FEMS Microbiology Reviews, 29, pp. 3-23
dc.descriptionNational company of supply, , http://www.conab.gov.br/OlalaCMS/uploads/arquivos/12_08_10_14_57_19_boletim_cana_portugues_-_agosto_2012_2o_lev.pdf, CONAB (Acess in: August 20, 2012)
dc.descriptionDorta, C., Cruz, R., Oliva-Neto, P., Moura, D.J.C., Sugarcane molasses and yeast powder used in the fructooligosaccharides production by Aspergillus japonicus-FCL 119T and Aspergillus niger ATCC 20611 (2006) Journal of Industrial Microbiology and Biotechnology, 33, pp. 1003-1009
dc.descriptionFalcão, C.L., Castro-Solla, L., Maertens, L., Marounek, M., Pinheiro, V., Freire, J., Alternatives to antibiotic growth promoters in rabbit feeding: A review (2007) World Rabbit Science, 15, pp. 127-140
dc.descriptionFonseca, A.P., Falcão, C.L., Kocher, A., Spring, P., Effects of dietary mannan oligosaccharide in comparison to oxytetracycline on performance of growing rabbits (2004) 8th World Rabbit Congress, Puebla, México, pp. 829-833
dc.descriptionGarrote, G., Domínguez, H., Parajó, J.C., Mild autohydrolysis: An environmentally friendly technology for xylo-oligosaccharide production from wood (1999) Journal of Chemical Technology and Biotechnology, 74, pp. 1101-1109
dc.descriptionGarrote, G., Dominguez, H., Parajó, J.C., Autohydrolysis of corncob: study of non-isothermal operation for xylo-oligosaccharide production (2002) Journal of Food Engineering, 52, pp. 211-218
dc.descriptionGill, H.S., Shu, Q., Lin, H., Rutherfurd, K.J., Cross, M.L., Protection against translocating Salmonella typhimurium infection in mice by feeding the immuno-enhancing probiotic Lactobacillus rhamnosus strain HN001 (2001) Medical Microbiology and Immunology, 190, pp. 97-104
dc.descriptionGomes, E., Guez, M.A.U., Martin, N., Silva, R., Enzimas termoestáveis: fontes, produção e aplicação industrial (2007) Química Nova, 30, pp. 136-145
dc.descriptionGottschalk, L.M.F., Oliveira, R.A., Bom, E.P.S., Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by Trichoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse (2010) Biochemical Engineering Journal, 51, pp. 72-78
dc.descriptionGrootaert, C., Delcour, J.A., Courtin, C.M., Broekaert, W.F., Verstraete, W., Wiele, T.V., Microbial metabolism and prebiotic potency of arabinoxylan oligosaccharides in the human intestine (2007) Trends in Food Science & Technology, 18, pp. 64-71
dc.descriptionGullón, P., Moura, P., Esteves, M., Girio, F.M., Domínguez, H., Parajó, J.C., Assessment on the fermentability of xylo-oligosaccharides from rice husks by probiotic bacteria (2008) Journal of Agricultural and Food Chemistry, 56, pp. 7482-7487
dc.descriptionHinz, S.W.A., Pouvreau, L., Joosten, R., Bartels, J., Jonathan, M.C., Wery, J., Hemicellulase production in Chrysosporium lucknowense C1 (2009) Journal Cereal Science, 50, pp. 318-323
dc.descriptionHughes, S.A., Shewry, P.R., Li, L., Gibson, G.R., Sanz, M.L., Rastall, R.A., In vitro fermentation by human fecal microflora of wheat arabinoxylans (2007) Journal of Agricultural and Food Chemistry, 55, pp. 4589-4595
dc.descriptionIzumi, K., Azumi, N., Xylooligosaccharide compositions useful as food and feed additives (2001) Japan Patent JP, , 2, 001, 226,409
dc.descriptionJaskari, J., Kontula, P., Siitonen, A., Jousimies-Somer, H., Mattila-Sandholm, T., Poutanen, K., Oat β-glucan and xylan hydrolysates as selective substrates for Bifidobacterium and Lactobacillus strains (1998) Applied Microbiology and Biotechnology, 49, pp. 175-181
dc.descriptionJayapal, N., Samanta, A.K., Kolte, A.P., Senani, S., Sridhar, M., Suresh, K.P., Value addition to sugarcane bagasse: Xylan extraction and its process optimization for xylooligosaccharides production (2013) Industrial Crops and Products, 42, pp. 14-24
dc.descriptionJiang, Z., Zhu, Y., Li, L., Yu, X., Kusakabe, I., Kitaoka, M., Transglycosylation reaction of xylanase B from the hyperthermophilic Thermotoga maritima with the ability of synthesis of tertiary alkyl β-d-xylobiosides and xylosides (2004) Journal of Biotechnology, 114, pp. 125-134
dc.descriptionJorgensen, H., Morkeberg, A., Kristian, B.R.K., Olsson, L., Production of cellulases and hemicellulases by three Penicillium species: Effect of substrate and evaluation of cellulose adsorption by capillary electrophoresis (2005) Enzyme Microbiology Technology, 36, pp. 42-48
dc.descriptionKabel, M.A., Carvalheiro, F., Garrote, G., Avgerinos, E., Koukios, E., Parajó, J.C., Hydrothermally treated xylan rich by-products yield different classes of xylo-oligosaccharides (2002) Carbohydrate Polymers, 47, pp. 47-56
dc.descriptionLakshmi, G.S., Rao, C.S., Rao, R.S., Hobbs, P.J., Prakasham, R.S., Enhanced production of xylanase by a newly isolated Aspergillus terreus under solid state fermentation using palm industrial waste: A statistical optimization (2009) Biochemical Engineering Journal, 48, pp. 51-57
dc.descriptionLeBlanc, A.M., Castillo, N.A., Perdigon, G., Antiinfective mechanisms induced by a probiotic Lactobacillus strain against Salmonella enterica serovar Typhimurium infection (2010) International Journal of Food Microbiology, 138, pp. 223-231
dc.descriptionLeite, R.S., Daniela, A.B., Eduardo, D.S., Denis, S., Eleni, G., Roberto, S., Production of cellulolytic and hemicellulolytic enzymes from Aureobasidium pulluans on solid state fermentation (2007) Applied Biochemistry and Biotechnology, pp. 281-288
dc.descriptionLicht, T.R., Ebersbach, T., Frøkiær, H., Prebiotics for prevention of gut infections (2012) Trends in Food Science & Technology, 23, pp. 70-82
dc.descriptionLin, Y.S., Tseng, M.J., Lee, W.C., Production of xylooligosaccharaides using immobilized endo-xylanase of Bacillus halodurans (2011) Process Biochemistry, 46, pp. 2117-2121
dc.descriptionMäkeläinen, H., Forssten, S., Saarinen, M., Stowell, J., Rautonen, N., Ouwehand, A.C., Xylo-oligosaccharides enhance the growth of bifidobacteria and Bifidobacterium lactis in a simulated colon model (2010) Beneficial Microbes, 1, pp. 81-91
dc.descriptionMaslen, S.L., Goubet, F., Adam, A., Dupree, P., Stephens, E., Structure elucidation of arabinoxylan isomers by normal phase HPLC-MALDI-TOF/TOF-MS/MS (2007) Carbohydrate Research, 342, pp. 724-735
dc.descriptionMoura, P., Barata, R., Carvalheiro, F.P., Gírio, F., Loureiro-Dias, M.C., Esteves, M.P., In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains (2007) LWT - Food Science and Technology, 40, pp. 963-972
dc.descriptionMoura, P., Cabanas, S., Lourenço, P., Gírio, F., Loureiro-Dias, M.C., Esteves, M.P., In vitro fermentation of selected xylo-oligosaccharides by piglet intestinal microbiota (2008) LWT - Food Science and Technology, 41 (10), pp. 1952-1961
dc.descriptionMourão, J.L., Pinheiro, V., Alves, A., Guedes, C.M., Pinto, L., Saavedra, M.J., Effect of mannan oligosaccharides on the performance, intestinal morphology and cecal fermentation of fattening rabbits (2006) Animal Feed Science and Technology, 126, pp. 107-120
dc.descriptionMoure, A., Gullón, P., Domínguez, H., Parajó, J.C., Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals (2006) Process Biochemistry, 41, pp. 1913-1923
dc.descriptionMussatto, S.I., Mancilha, I.M., Non-digestible oligosaccharides: A review (2007) Carbohydrate Polymers, 68, pp. 587-597
dc.descriptionNabarlatz, D., Ebringerová, A., Montané, D., Autohydrolysis of agricultural by-products for the production of xylo-oligosaccharides (2007) Carbohydrate Polymers, 69, pp. 20-28
dc.descriptionNarang, S., Sahai, V., Bisaria, V.S., Optimization of xylanase production by Melanocarpus albomyces IIS68 in solid state fermentation using response surface methodology (2001) Journal of Bioscience and Bioengineering, 91, pp. 425-427
dc.descriptionOkazaki, M., Fujikawa, S., Matsumoto, N., Effects of xylooligosaccharide on growth of bifidobacteria (1990) Journal of Japan Society of Nutrition and Food Sciences, 43, pp. 395-401
dc.descriptionOlano-Martin, E., Gibson, G.R., Rastall, R.A., Comparison of the in vitro bifidogenic properties of pectins and pectic-oligosaccharides (2002) Journal of Applied Microbiology, 93, pp. 505-511
dc.descriptionOliva-Neto, P., Menão, P.T.P., Isomaltulose production from sucrose by Protaminobacter rubrum immobilized in calcium alginate (2009) Bioresource Technology, 100, pp. 4252-4256
dc.descriptionOliveira, L.A., Porto, A.L.F., Tambourgi, E.B., Production of xylanase and protease by Penicillium janthinellum CRC 87M-115 from different agricultural wastes (2006) Bioresource Technology, 97, pp. 862-867
dc.descriptionOtieno, D.O., Ahring, B.K., The potential for oligosaccharide production from the hemicellulose fraction of biomasses through pretreatment processes: Xylooligosaccharides (XOS), arabinooligosaccharides (AOS), and mannooligosaccharides (MOS) (2012) Carbohydrate Research, 360, pp. 84-92
dc.descriptionOtieno, D.O., Ahring, B.K., A thermochemical pretreatment process to produce xylooligosaccharides (XOS), arabinooligosaccharides (AOS) and mannooligosaccharides (MOS) from lignocellulosic biomasses (2012) Bioresource Technology, 112, pp. 285-292
dc.descriptionPandey, A., Soccol, C.R., Nigam, P., Soccol, V.T., Biotechnological potential of agro-industrial residues I: Sugarcane bagasse (2000) Bioresource Technology, 74, pp. 69-80
dc.descriptionPinheiro, V., Alves, A., Mourão, J.L., Guedes, C.M., Pinto, L., Spring, P., Effect of mannan oligosaccharides on the ileal morphometry and cecal fermentation of growing rabbits (2004) Proc.: 8th World Rabbit Congress, Puebla, México, pp. 936-941
dc.descriptionPolizeli, M.L.T.M., Rizzatti, A.C.S., Monti, R., Terenzi, H.F., Jorge, J.A., Amorim, D.S., Xylanases from fungi: Properties and industrial application (2005) Applied Microbiolology Biotechnolology, 67, pp. 577-591
dc.descriptionRaimbault, M., General and microbiological aspects of solid substrate fermentation (1998) Electronic Journal of Biotechnology, 1, pp. 1-15
dc.descriptionRastall, R.A., Maitin, V., Prebiotics and synbiotics: Towards the next generation (2002) Current Opinion in Biotechnology, 13, pp. 490-496
dc.descriptionRivero-Urgell, M., Santamaria-Orleans, A., Oligosaccharides: Application in infant food (2001) Early Human Development, 65, pp. S43-S52
dc.descriptionRodrigues, T.H.S., Dantas, M.A.A., Pinto, G.A.S., Goncalves, L.R.B., Tannase production by solid state fermentation of cashew apple bagasse (2007) Applied Biochemistry and Biotechnology, pp. 675-688
dc.descriptionRodrigues, R.C.L.B., Rocha, G.J.M., Rodrigues, D., Izário Filho, H.J., Felipe, M.G.A., Pessoa, A., Scale-up of diluted sulfuric acid hydrolysis for producing sugarcane bagasse hemicellulosic hydrolysate (SBHH) (2010) Bioresource Technology, 101, pp. 1247-1253
dc.descriptionRycroft, C.E., Jones, M.R., Gibson, G.R., Rastall, R.A., A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides (2001) Journal of Applied Microbiology, 91, pp. 878-887
dc.descriptionSabiha-Hanim, S., Noor, M.A.M., Rosma, A., Effect of autohydrolysis and enzymatic treatment on oil palm (Elaeis guineensis Jacq.) frond fibres for xylose and xylooligosaccharides production (2011) Bioresource Technology, 102, pp. 1234-1239
dc.descriptionSaha, B.C., Hemicellulose bioconversion (2003) Journal of Industrial Microbiology and Biotechnology, 30, pp. 279-291
dc.descriptionSamanta, A.K., Jayapal, N., Kolte, A.P., Senani, S., Sridhar, M., Suresh, K.P., Enzymatic production of xylooligosaccharides from alkali solubilized xylan of natural grass (Sehima nervosum) (2012) Bioresource Technology, 112, pp. 199-205
dc.descriptionSamanta, A.K., Senani, S., Kolte, A.P., Sridhar, M., Sampath, K.T., Jayapal, N., Production and in vitro evaluation of xylooligosaccharides generated from corncobs (2012) Food and Bioproducts Processing, 90, pp. 466-474
dc.descriptionSantos, D.T., Sarrouh, B.F., Rivaldi, J.D., Converti, A., Silva, S.S., Use of sugarcane bagasse as biomaterial for cell immobilization (2008) Journal of Food Engineering, 86, pp. 542-548
dc.descriptionSenani, S., Sridhar, M., Samanta, A.K., Kolte, A.P., Venugopal, N., Satish, L., Selection of lactobacillus as probiotics for use as feed supplement (2009) Proceedings of 13th Biennial ANSI Conference on Diversification of Animal Nutrition Research in the Changing Scenario held at Bangalore from 17-19 December 2009, p. 118
dc.descriptionSharma, M., Chadha, B.S., Chapter 9 - Production of hemicellulolytic enzymes for hydrolysis of lignocellulosic biomass (2011) Biofuels, pp. 203-228
dc.descriptionSharma, M., Chadha, B.S., Saini, H.S., Purification and characterization of two thermostable xylanases from Malbranchea flava active under alkaline conditions (2010) Bioresource Technology, 101, pp. 8834-8842
dc.descriptionSharp, R., Fishbain, S., Macfarlane, G.T., Effect of short-chain carbohydrates on human intestinal bifidobacteria and Escherichia coli in vitro (2001) Journal of Medical Microbiology, 50, pp. 152-160
dc.descriptionShu, Q., Lin, H., Rutherfurd, K.J., Fenwick, S.G., Prasad, J., Gopal, P.K., Dietary Bifidobacterium lactis (HN019) enhances resistance to oral Salmonella typhimurium infection in mice (2000) Microbiology and Immunology, 44, pp. 213-222
dc.descriptionSilva, A.M., Barbosa, F.H., Duarte, R., Vieira, L.Q., Arantes, R.M., Nicoli, J.R., Effect of Bifidobacterium longum ingestion on experimental salmonellosis in mice (2004) Journal of Applied Microbiology, 97 (1), pp. 29-37
dc.descriptionSong, J.M., Wei, D.Z., Production and characterization of cellulases and xylanases of Cellulosimicrobium cellulans grown in pretreated and extracted bagasse and minimal nutrient medium M9 (2010) Biomass and Bioenergy, 34, pp. 1930-1934
dc.descriptionSonia, K.G., Chadha, B.S., Saini, H.S., Sorghum straw for xylanase hyper-production by Thermomyces lanuginosus (D2W3) under solid-state fermentation (2005) Bioresource Technology, 96, pp. 1561-1569
dc.descriptionSubramanian, S., Prema, P., Biotechnology of microbial xylanases: Enzymology, molecular biology, and application (2002) Critical Reviews in Biotechnology, 22, pp. 33-64
dc.descriptionSun, J.X., Sun, X.F., Sun, R.C., Su, Y.Q., Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses (2004) Carbohydrate Polymers, 56, pp. 195-204
dc.descriptionSunna, A., Antranikian, G., Xylanolytic enzymes from fungi and bacteria (1997) Critical Reviews in Biotechnology, 17, pp. 39-67
dc.descriptionTan, S.S., Li, D.Y., Jiang, Z.Q., Zhu, Y.P., Shi, B., Li, L.T., Production of xylobiose from the autohydrolysis explosion liquor of corncob using Thermotoga maritima xylanase B (XynB) immobilized on nickel-chelated Eupergit C (2008) Bioresource Technology, pp. 200-204
dc.descriptionTechapun, C., Poosaran, N., Watanabe, M., Sasaki, K., Thermostable and alkaline-tolerant microbial cellulase-free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocess: A review (2003) Process Biochemistry, 38, pp. 1327-1340
dc.descriptionTerrasan, C.R.F., Temer, B., Duarte, M.C.T., Carmona, E.C., Production of xylanolytic enzymes by Penicillium janczewskii (2010) Bioresource Technology, 101, pp. 4139-4143
dc.descriptionThygeson, A., Thomson, A.B., Schmidt, A.S., Jorgenson, H., Olsson, L., Production of cellulose and hemicellulose degrading enzymes by filamentous fungus cultivated on wet oxidised wheat straw (2003) Enzyme Microbiology Technology, 32, pp. 606-615
dc.descriptionTruusalu, K., Mikelsaar, R.H., Naaber, P., Karki, T., Kullisaar, T., Zilmer, M., Eradication of Salmonella typhimurium infection in a murine model of typhoid fever with the combination of probiotic Lactobacillus fermentum ME-3 and ofloxacin (2008) BMC Microbiology, 8, p. 132
dc.descriptionTuohy, K.M., Rouzaud, G.C.M., Brück, W.M., Gibson, G.R., Modulation of the human gut microflora towards improved health using prebiotics - Assessment of efficacy (2005) Current Pharmaceutical Design, 11, pp. 75-90
dc.descriptionVan Laere, K.M.J., Hartemink, R., Bosveld, M., Schols, H.A., Voragen, A.G.J., Fermentation of plant cell wall derived polysaccharides and their corresponding oligosaccharides by intestinal bacteria (2000) Journal of Agricultural and Food Chemistry, 48, pp. 1644-1652
dc.descriptionVázquez, M.J., Alonso, J.L., Domínguez, H., Parajó, J.C., Xylo-oligosaccharides: Manufacture and applications (2000) Trends in Food Science & Technology, 11, pp. 387-393
dc.descriptionVázquez, M.J., Alonso, J.L., Domínguez, H., Parajó, J.C., Enzymatic processing of crude xylooligomer solutions obtained by autohydrolysis of eucalyptus wood (2002) Food Biotechnology, 16, pp. 91-105
dc.descriptionVázquez, M.J., Garrote, G., Alonso, J.L., Domínguez, H., Parajó, J.C., Refining of autohydrolysis liquors for manufacturing xylo-oligosaccharides: Evaluation of operational strategies (2005) Bioresource Technology, 96, pp. 889-896
dc.descriptionVieira, L.Q., Santos, L.M., Neumann, E., da Silva, A.P., Moura, L.N., Nicoli, J.R., Probiotics protect mice against experimental infections (2008) Journal of Clinical Gastroenterology, 42, pp. S168-S169
dc.descriptionVoragen, A.G.J., Technological aspects of functional food-related carbohydrates (1998) Trends in Food Science & Technology, 9, pp. 328-335
dc.descriptionWallace, R.J., (2007) Plants and their extracts and other natural alternatives to antimicrobials in feeds, , http://ec.europa.eu/research/biosociety/food_quality/projects/034_en.html, European Commission
dc.descriptionWang, J., Yuan, X., Sun, B., Cao, Y., Tian, Y., Wang, C., On-line separation and structural characterization of feruloylated oligosaccharide from wheat bran using HPLC-ESI-MSn (2009) Food Chemistry, 115, pp. 1529-1541
dc.descriptionWong, K.K.Y., Tan, L.U.L., Saddler, J.N., Multiplicity of beta-1,4-xylanases in microorganisms: Functions and applications (1988) Microbiology Review, 52, pp. 305-317
dc.descriptionYáñez, R., Alonso, J.L., Parajó, J.C., Enzymatic saccharification of hydrogen peroxide-treated solids from hydrothermal processing of rice husks (2006) Process Biochemistry, 41, pp. 1244-1252
dc.descriptionYang, H., Wang, K., Song, X., Xu, F., Production of xylooligosaccharides by xylanase from Pichia stipitis based on xylan preparation from triploid Populas tomentosa (2011) Bioresource Technology, 102, pp. 7171-7176
dc.descriptionYang, R., Xu, S., Wang, Z., Yang, W., Aqueous extraction of corncob xylan and production of xylo-oligosaccharides (2005) Food Science and Technology, 38, pp. 677-682
dc.descriptionZhu, S., Wu, Y., Zhang, X., Li, H., Gao, M., The effect of microwave irradiation on enzymatic hydrolysis of rice straw (2006) Bioresource Technology, 97, pp. 1964-1968
dc.languageen
dc.publisher
dc.relationFood Research International
dc.rightsfechado
dc.sourceScopus
dc.titleXylo-oligosaccharides From Lignocellulosic Materials: Chemical Structure, Health Benefits And Production By Chemical And Enzymatic Hydrolysis
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución