dc.creator | Cassioli A. | |
dc.creator | Gunluk O. | |
dc.creator | Lavor C. | |
dc.creator | Liberti L. | |
dc.date | 2015 | |
dc.date | 2015-06-25T12:54:14Z | |
dc.date | 2015-11-26T15:15:45Z | |
dc.date | 2015-06-25T12:54:14Z | |
dc.date | 2015-11-26T15:15:45Z | |
dc.date.accessioned | 2018-03-28T22:25:34Z | |
dc.date.available | 2018-03-28T22:25:34Z | |
dc.identifier | | |
dc.identifier | Discrete Applied Mathematics. Elsevier, v. , n. , p. - , 2015. | |
dc.identifier | 0166218X | |
dc.identifier | 10.1016/j.dam.2014.08.035 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84923846086&partnerID=40&md5=8d1d86298df6bd92cd8bc85f494e88c6 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/85572 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/85572 | |
dc.identifier | 2-s2.0-84923846086 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1259087 | |
dc.description | When a weighted graph is an instance of the Distance Geometry Problem (DGP), certain types of vertex orders (called discretization orders) allow the use of a very efficient, precise and robust discrete search algorithm (called Branch-and-Prune). Accordingly, finding such orders is critically important in order to solve DGPs in practice. We discuss three types of discretization orders, the complexity of determining their existence in a given graph, and the inclusion relations between the three order existence problems. We also give three mathematical programming formulations of some of these ordering problems. | |
dc.description | | |
dc.description | | |
dc.description | | |
dc.description | | |
dc.language | en | |
dc.publisher | Elsevier | |
dc.relation | Discrete Applied Mathematics | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Discretization Vertex Orders In Distance Geometry | |
dc.type | Artículos de revistas | |