dc.creatorVianna S.S.V.
dc.creatorCant R.S.
dc.date2013
dc.date2015-06-25T19:17:52Z
dc.date2015-11-26T15:15:43Z
dc.date2015-06-25T19:17:52Z
dc.date2015-11-26T15:15:43Z
dc.date.accessioned2018-03-28T22:25:32Z
dc.date.available2018-03-28T22:25:32Z
dc.identifier
dc.identifierProcess Safety And Environmental Protection. Institution Of Chemical Engineers, v. 92, n. 6, p. 590 - 597, 2013.
dc.identifier9575820
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84922962791&partnerID=40&md5=19107889de9a450f9e00ae5cde663448
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89625
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89625
dc.identifier2-s2.0-84922962791
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1259076
dc.descriptionThe utilisation of computational fluid dynamics (CFD) in process safety has increased significantly in recent years. The modelling of accidental explosion via CFD has in many cases replaced the classical Multi Energy and Brake Strehlow methods. The benefits obtained with CFD modelling can be diminished if proper modelling of the initial phase of explosion is neglected. In the early stages of an explosion, the flame propagates in a quasi-laminar regime. Proper modelling of the initial laminar phase is a key aspect in order to predict the peak pressure and the time to peak pressure. The present work suggests a modelling approach for the initial laminar phase in explosion scenarios. Findings are compared with experimental data for two classical explosion test cases which resemble the common features in chemical process areas (confinement and congestion). A detailed analysis of the threshold for the transition from laminar to turbulent regime is also carried out. The modelling is implemented in a fully 3D Navier-Stokes compressible formulation. Combustion is treated using a laminar flamelet approach based on the Bray, Moss and Libby (BML) formulation. A novel modified porosity approach developed for the unstructured solver is also considered. Results agree satisfactorily with experiments and the modelling is found to be robust.
dc.description92
dc.description6
dc.description590
dc.description597
dc.descriptionAbu-Orf, G.M.O., (1996) Laminar Flamelet Reaction Rate Modelling for Spark Ignition Enginges, , UMIST, UK, Ph.D. Thesis
dc.descriptionArntzen, B.J., (1998) Modelling of Turbulence and Combustion for Simulation of Gas Explosions in Complex Geometries, , The Norwegian University of Science and Technology. Division of Thermodynamics and Fluid Dynamics, Norway, Ph.D. Thesis
dc.descriptionAtkinson, G., Cusco, L., Buncefield. A violent, episodic vapour cloud explosion (2011) Process Saf. Environ. Prot., 89, pp. 360-370
dc.descriptionBakke, J.R., Hjertager, B.H., The effect of explosion venting in empty volumes (1987) Int. J. Numer. Methods Eng., 24, pp. 129-140
dc.descriptionBakke, J.R., Hjertager, B.H., The effect of explosion venting in obstructed channels (1986) Modell. Simul. Eng., pp. 237-241
dc.descriptionBimson, S.J., Bull, D.C., Cresswell, T.M., Narks, P.R., Masters, A.P., Prothero, A., Puttock, J.S., Samuel, B., An experimental study of the physics of gaseous deflagration in a very large vented enclosure (1993) 14th Int. Colloq. on the Dynamics of Explosions and Reactive Systems, pp. 237-241. , 1-6, August 1993, Coimbra.Portugal
dc.descriptionBray, K.N.C., Libby, P.A., Moss, J.B., Flamelet crossing frequencies and mean reaction rates in premixed turbulent combustion (1984) Combust. Sci. Technol., 41, pp. 143-172
dc.descriptionBray, K.N.C., Libby, P.A., Moss, J.B., Unified modelling approach for premixed turbulent combustion - Part I: General formulation (1985) Combust. Flame, 61, pp. 87-102
dc.descriptionCant, R.S., Dawes, W.N., Savill, A.M., Advanced CFD modelling of accidental explosions (2004) Annu. Rev. Fluid Mech., 36, pp. 97-119
dc.descriptionCiccarelli, G., Dorofeev, S., Flame acceleration and transition to detonation in ducts (2008) Prog. Energy Combust. Sci., 34, pp. 499-550
dc.descriptionDawes, W.N., The practical application of solution-adaption to the numerical simulation of complex turbomachinery problems (1992) Prog. Aerospace Sci, 29, pp. 221-269
dc.descriptionHeidari, A., Ferraris, S., Wen, J.X., Tam, V.H.Y., Numerical simulation of hydrogen detonation (2011) Int. J. Hydrogen Energy., 36, pp. 2538-2544
dc.descriptionIbrahim, S.S., Gubba, S.R., Malalasekera, W., Calculation of explosion deflagrating flames using a dynamics flame surface density model (2009) J. Loss Prey. Proc. Ind., 22, pp. 258-264
dc.descriptionJameson, A., Baker, T., Improvements to the aircraft Euler method (1997) AIAA Paper, pp. 87-0452
dc.descriptionJohansen, C., Ciccarelli, G., Modelling the initial flame acceleration in an obstructured channel using large Eddy simulation (2013) J. Loss Prey. Ind., 26, pp. 571-585
dc.descriptionLowesmith, B.J., Hankison, G., Johnson, D.M., Vapour cloud explosions in a long congested region involving methane/hydrogen mixtures (2011) Process Saf. Environ. Prot, 89, pp. 234-247
dc.descriptionMercx, W.P.M., Van Den Berg, A.C., (1994) Mouilleau Y. Modelling and Experimental Research Into Gas Explosions, pp. 234-247. , TNO Report PML 1993-C137
dc.descriptionOgawa, T., Gamezo, V.N., Oran, E.S., Flame acceleration and transition to detonation in an array of square obstacles (2013) J. Loss Prey. Proc. Ind., 26, pp. 355-362
dc.descriptionRahide, M., Aubry, N., Sivashinsky, G.I., Lima, R., Formation of wrinkles in outwardly propagating flames (1995) Phy. Rev., 52, pp. 3675-3686
dc.descriptionSaeter, O., (1998) Modelling and Simulation of Gas Explosion in Complex Geometries, pp. 3675-3686. , Telemark College. Department of Technology. Institute of Process Technology, Norway, Ph.D. Thesis
dc.descriptionSarli, V.D., Benedetto, A.D., Russo, G., Sub-grid scale combustion models for large Eddy simulation of unsteady premixed propagation around obstacles (2010) J. Hazardous Mater., 180, pp. 71-78
dc.descriptionShepherd, J.E., Detonation in gases (2009) Proc. Combust. Inst., 32, pp. 83-98
dc.descriptionVenart, J.E.S., Flixborough: The explosion and its aftermath (2004) Process Saf. Environ. Prot., 82 (2), pp. 105-127
dc.descriptionVianna, S.S.V., Cant, R.S., Explosion pressure prediction via polynomial mathematical correlation based on advanced CFD Modelling (2012) J. Loss Prey. Proc. Ind., 25, pp. 81-89
dc.descriptionVianna, S.S.V., Cant, R.S., Modified porosity approach and laminar flamelet model for advanced numerical explosion (2010) J. Loss Prey. Proc. Ind., 23, pp. 3-14
dc.descriptionWada, Y., Kuwana, K., A numerical method to predict flame fractal dimension during gas explosion (2013) J. Loss Prey. Ind., 26, pp. 392-395
dc.languageen
dc.publisherInstitution of Chemical Engineers
dc.relationProcess Safety and Environmental Protection
dc.rightsfechado
dc.sourceScopus
dc.titleInitial Phase Modelling In Numerical Explosion Applied To Process Safety
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución