dc.creatorAbreu E.
dc.creatorConceicao D.
dc.date2013
dc.date2015-06-25T19:17:31Z
dc.date2015-11-26T15:15:23Z
dc.date2015-06-25T19:17:31Z
dc.date2015-11-26T15:15:23Z
dc.date.accessioned2018-03-28T22:25:13Z
dc.date.available2018-03-28T22:25:13Z
dc.identifier
dc.identifierJournal Of Scientific Computing. , v. 55, n. 3, p. 688 - 717, 2013.
dc.identifier8857474
dc.identifier10.1007/s10915-012-9653-0
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84893646380&partnerID=40&md5=d4745ada3ca4fa8863c5d6d0f79e8d71
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89566
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89566
dc.identifier2-s2.0-84893646380
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1259007
dc.descriptionIn this paper is introduced a new numerical formulation for solving degenerate nonlinear coupled convection dominated parabolic systems in problems of flow and transport in porous media by means of a mixed finite element and an operator splitting technique, which, in turn, is capable of simulating the flow of a distinct number of fluid phases in different porous media regions. This situation naturally occurs in practical applications, such as those in petroleum reservoir engineering and groundwater transport. To illustrate the modelling problem at hand, we consider a nonlinear three-phase porous media flow model in one- and two-space dimensions, which may lead to the existence of a simultaneous one-, two- and three-phase flow regions and therefore to a degenerate convection dominated parabolic system. Our numerical formulation can also be extended for the case of three space dimensions. As a consequence of the standard mixed finite element approach for this flow problem the resulting linear algebraic system is singular. By using an operator splitting combined with mixed finite element, and a decomposition of the domain into different flow regions, compatibility conditions are obtained to bypass the degeneracy in order to the degenerate convection dominated parabolic system of equations be numerically tractable without any mathematical trick to remove the singularity, i.e., no use of a parabolic regularization. Thus, by using this procedure, we were able to write the full nonlinear system in an appropriate way in order to obtain a nonsingular system for its numerical solution. The robustness of the proposed method is verified through a large set of high-resolution numerical experiments of nonlinear transport flow problems with degenerating diffusion conditions and by means of a numerical convergence study. © Springer Science+Business Media New York 2012.
dc.description55
dc.description3
dc.description688
dc.description717
dc.descriptionAarnes, J.E., Krogstad, S., Lie, K.-A., A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids (2006) Multiscale Model. Simul., 5 (2), pp. 337-363
dc.descriptionAarnes, J.E., Hauge, V.L., Efendiev, Y., Coarsening of three-dimensional structured and unstructured grids for subsurface flow (2007) Adv. Water Resour., 30 (11), pp. 2177-2193
dc.descriptionAarnes, J.E., Krogstad, S., Lie, K.-A., Multiscale mixed/mimetic methods on corner-point grids (2008) Comput. Geosci., 12, pp. 297-315
dc.descriptionAbreu, E., Furtado, F., Pereira, F., On the numerical simulation of three-phase reservoir transport problem (2004) Transp. Theory Stat. Phys., 33, pp. 1-24
dc.descriptionAbreu, E., Douglas, J., Furtado, F., Marchesin, D., Pereira, F., Three-phase immiscible displacement in heterogeneous petroleum reservoirs (2006) Math. Comput. Simul., 73, pp. 2-20
dc.descriptionAbreu, E., Douglas, J., Furtado, F., Pereira, F., Operator splitting based on physics for flow in porous media (2008) Int. J. Comput. Sci., 2, pp. 315-335
dc.descriptionAzevedo, A., Marchesin, D., Plohr, B.J., Zumbrun, K., Capillary instability in models for three-phase flow (2002) Z. Angew. Math. Phys., 53, pp. 713-746
dc.descriptionAzevedo, A., Souza, A., Furtado, F., Marchesin, D., Plohr, B., The solution by the wave curve method of three-phase flow in virgin reservoirs (2010) Transp. Porous Media, 83, pp. 99-125
dc.descriptionBlunt, M.J., Thiele, M.R., Batycky, R.P., A 3D field scale streamline-based reservoir simulator (1997) SPE Reserv. Eng., pp. 246-254
dc.descriptionBorges, M.R., Furtado, F., Pereira, F., Amaral Souto, H.P., Scaling analysis for the tracer flow problem in self-similar permeability fields multiscale model (2008) Multiscale Model. Simul., 7, pp. 1130-1147
dc.descriptionBrooks, R.H., Corey, A.T., Hydraulic properties of porous media (1964) Hydrology Paper No. 3, pp. 1-27. , Colorado State University, Fort Collins
dc.descriptionBürger, R., Coronel, A., Sepúlveda, M., A semi-implicit monotone difference scheme for an initialboundary value problem of a strongly degenerate parabolic equation modelling sedimentation-consolidation processes (2006) Math. Comput., 75, pp. 91-112
dc.descriptionCavalli, F., Naldi, G., Puppo, G., Semplice, M., High-order relaxation schemes for nonlinear degenerate diffusion problems (2007) SIAM J. Numer. Anal., 45, pp. 2098-2119
dc.descriptionChavent, G., Jaffré, J., Mathematical models and finite elements for reservoir simulation (1986) Studies in Applied Mathematics, 17. , North-Holland, Amsterdam
dc.descriptionChen, Z., Ewing, R.E., Comparison of various formulation of three-phase flow in porous media (1997) J. Comput. Phys., 132, pp. 362-373
dc.descriptionChertock, A., Doering, C.R., Kashdan, E., Kurganov, A., A fast explicit operator splitting method for passive scalar advection (2010) J. Sci. Comput., 45, pp. 200-214
dc.descriptionChrispella, J.C., Ervin, V.J., Jenkinsa, E.W., A fractional step θ-method for convection-diffusion problems (2007) J. Math. Anal. Appl., 333, pp. 204-218
dc.descriptionCorey, A., Rathjens, C., Henderson, J., Wyllie, M., Three-phase relative permeability (1956) Trans. Am. Inst. Min. Metall. Eng., 207, pp. 349-351
dc.descriptionDafermos, C.M., (2010) Hyperbolic Conservation Laws in Continuum Physics, , 3rd edn. Springer, Berlin
dc.descriptionDahle, H.K., Ewing, R.E., Russell, T.F., Eulerian-lagrangian localized adjoint methods for a nonlinear advection-diffusion equation (1995) Comput. Methods Appl. Mech. Eng., 122, pp. 223-250
dc.descriptionDi Chiara Roupert, R., Chavent, G., Schafer, G., Three-phase compressible flow in porous media: Total differential compatible interpolation of relative permeabilities (2010) J. Comput. Phys., 229, pp. 4762-4780
dc.descriptionDoughty, C., Pruess, K., Modeling supercritical carbon dioxide injection in heterogeneous porous media (2004) Vadose Zone J., 3, pp. 837-847
dc.descriptionDouglas Jr., J., Furtado, F., Pereira, F., On the numerical simulation of waterflooding of heterogeneous petroleum reservoirs (1997) Comput. Geosci., 1, pp. 155-190
dc.descriptionDouglas, J., Russell, T.F., Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures (1982) SIAM J. Numer. Anal., 19 (5), pp. 871-885
dc.descriptionDouglas, J., Pereira, F., Yeh, L.-M., A locally conservative eulerian-lagrangian method for flow in a porous medium of a mixture of two components having different densities (2000) Numerical Treatment of Multiphase Flows in Porous Media. Lecture Notes in Physics, 552, pp. 138-155. , Springer, Berlin
dc.descriptionDria, D.E., Pope, G.A., Sepehrnoori, K., Three-phase gas/oil/brine relative permeabilities measured under CO 2 flooding conditions (1993) Soc. Pet. Eng. J., pp. 143-150. , 20184
dc.descriptionDurlofsky, L.J., A triangle based mixed finite element-finite volume technique for modeling two phase flow through porous media (1993) J. Comput. Phys., 105, pp. 252-266
dc.descriptionDurlofsky, L.J., Accuracy of mixed and control volume finite element approximations to darcy velocity and related quantities (1994) Water Resour. Res., 30, pp. 965-973
dc.descriptionDurlofsky, L.J., Upscaling and gridding of fine scale geological models for flow simulation (2005) 8th International Forum on Reservoir Simulation Iles Borromees, , Presented at Italy, June 20-24
dc.descriptionDurlofsky, L.J., Jones, R.C., Milliken, W.J., A nonuniform coarsening approach for the scale-up of displacement processes in heterogeneous porous media (1997) Adv. Water Resour., 20, pp. 335-347
dc.descriptionFortin, M., Brezzi, F., (1991) Mixed and Hybrid Finite Element Methods, , In: Springer Series in Computational Mathematics. Springer, Berlin
dc.descriptionFurtado, F., Pereira, F., Crossover from nonlinearity controlled to heterogeneity controlled mixing in two-phase porous media flows (2003) Comput. Geosci., 7, pp. 115-135
dc.descriptionGasda, S.E., Farthing, M.W., Kees, C.E., Miller, C.T., Adaptive split-operator methods for modeling transport phenomena in porous medium systems (2011) Adv. Water Resour., 34, pp. 1268-1282
dc.descriptionGerritsen, M.G., Durlofsky, L.J., Modeling fluid flow in oil reservoirs (2006) Annu. Rev. Fluid Mech., 37, pp. 211-238
dc.descriptionGlimm, J., Sharp, D.M., Stochastic methods for the prediction of complex multiscale phenomena (1998) Q. Appl. Math., 56, pp. 741-765
dc.descriptionGlimm, J., Sharp, D.M., Prediction and the quantification of uncertainty (1999) Physica D, 133, pp. 142-170
dc.descriptionHauge, V.L., Aarnes, J.E., Lie, K.A., (2008) Operator Splitting of Advection and Diffusion on Non-uniformly Coarsened Grids, , In: Proceedings of ECMOR XI-11th European Conference on the Mathematics of Oil Recovery, Bergen, Norway, 8-11 September
dc.descriptionHauge, V.L., Lie, K.-A., Natvig, J.R., (2010) Flow-based Grid Coarsening for Transport Simulations, , In: Proceedings of ECMOR XII-12th European Conference on the Mathematics of Oil Recovery (EAGE), Oxford, UK, 6-9 September
dc.descriptionHou, T.Y., Wu, X.H., A multiscale finite element method for elliptic problems in composite materials and porous media (1997) J. Comput. Phys., 134, pp. 169-189
dc.descriptionHu, C., Shu, C.-W., Weighted essentially non-oscillatory schemes on triangular meshes (1999) J. Comput. Phys., 150, pp. 97-127
dc.descriptionIsaacson, E., Marchesin, D., Plohr, B., Temple, J.B., Multiphase flow models with singular riemann problems (1992) Comput. Appl. Math., 11, pp. 147-166
dc.descriptionKarlsen, K.H., Risebro, N.H., Corrected operator splitting for nonlinear parabolic equations (2000) SIAM J. Numer. Anal., 37, pp. 980-1003
dc.descriptionKarlsen, K.H., Lie, K.-A., Natvig, J.R., Nordhaug, H.F., Dahle, H.K., Operator splitting methods for systems of convection-diffusion equations: Nonlinear error mechanisms and correction strategies (2001) J. Comput. Phys., 173, pp. 636-663
dc.descriptionKippe, V., Aarnes, J.E., Lie, K.A., A comparison of multiscale methods for elliptic problems in porous media flow (2008) Comput. Geosci., 12 (3), pp. 377-398
dc.descriptionKurganov, A., Petrova, G., Popov, B., Adaptive semi-discrete Central-upwind schemes for nonconvex hyperbolic conservation laws (2007) SIAM J. Sci. Comput., 29, pp. 2381-2401
dc.descriptionLeverett, M.C., Capillary behavior in porous solids (1941) Trans. Soc. Pet. Eng., 142, pp. 152-169
dc.descriptionLi, K., More general capillary pressure and relative permeability models from fractal geometry (2010) J. Contam. Hydrol., 111 (1-4), pp. 13-24
dc.descriptionMarchesin, D., Plohr, B., Wave structure in WAG recovery (2001) Soc. Pet. Eng. J., pp. 209-219. , 71314
dc.descriptionNessyahu, N., Tadmor, E., Non-oscillatory Central differencing for hyperbolic conservation laws (1990) J. Comput. Phys., 87, pp. 408-463
dc.descriptionOleinik, O., Discontinuous solutions of non-linear differential equations (1963) Transl. Am. Math. Soc., 26 (2), pp. 95-172
dc.descriptionPencheva, G., Thomas, S.G., Wheeler, M.F., Mortar coupling of multiphase flow and reactive transport on non-matching grids (2008) Finite Volumes for Complex Applications V (Problems and Perspectives), 5, pp. 135-143. , Eymard, R., Herard, J.M. (eds.) Aussois-France, October Wiley, New York
dc.descriptionRossen, W.R., Van Duijn, C.J., Gravity segregation in steady-state horizontal flow in homogeneous reservoirs (2004) J. Pet. Sci. Eng., 43, pp. 99-111
dc.descriptionShi, J., Hu, C., Shu, C.-W., A technique for treating negative weights in WENO schemes (2002) J. Comput. Phys., 175, pp. 108-127
dc.descriptionStone, H.L., Probability model for estimating three-phase relative permeability (1970) J. Pet. Technol., 22, pp. 214-218
dc.descriptionTitareva, V.A., Toro, E.F., Finite-volume WENO schemes for three-dimensional conservation laws (2004) J. Comput. Phys., 201 (1), pp. 238-260
dc.languageen
dc.publisher
dc.relationJournal of Scientific Computing
dc.rightsfechado
dc.sourceScopus
dc.titleNumerical Modeling Of Degenerate Equations In Porous Media Flow: Degenerate Multiphase Flow Equations In Porous Media
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución