Artículos de revistas
More On Polypseudorotaxanes Formed Between Poly(ethylene Glycol) And α-cyclodextrin
Registro en:
Langmuir. , v. 29, n. 15, p. 4664 - 4669, 2013.
7437463
10.1021/la304910v
2-s2.0-84876259234
Autor
Sabadini E.
Do Carmo Egidio F.
Cosgrove T.
Institución
Resumen
A new interpretation for the mechanism associated with the spontaneous threading of α-CD, onto a PEG chain followed by the supramolecular hydrogel formation, is described. Beyond a specific stoichiometry, the complexation of α-CD and PEG results in the formation of a two-phase system. Besides the phase separation, for PEG with a molecular weight higher than 6000 Da, part of the polymer chains are unthreaded by the α-CD, leading to the formation of a supramolecular hydrogel. The kinetics for the complexation and the determination of the yield for equilibrated systems consisting of PEG (linear and star) are used to investigate the number of α-CD threaded before and after the phase separation. The results are compared with the prediction obtained from the application of the Poisson distribution and reveal the ratio between α-CD and PEG in each step of the process. Additionally, the kinetics for the hydrogel formation and its inner structure are investigated by using the proton NMR spin-spin relaxation of water. © 2013 American Chemical Society. 29 15 4664 4669 Harada, A., Kamachi, M., Cyclodextrin-based supramolecular polymers (1990) Macromolecules, 23, pp. 2821-2823 Wenz, G., Han, B.H., Müller, A., Cyclodextrin rotaxanes and polyrotaxanes (2006) Chem. Rev., 106, pp. 782-817 Harada, A., Takashima, Y., Yamaguchi, H., Cyclodextrin-based supramolecular polymers (2009) Chem. Soc. Rev., 38, pp. 875-882 Harada, A., Okada, M., Kawaguchi, Y., Kamachi, M., Macromolecular recognition: New cyclodextrin polyrotaxanes and molecular tubes (1999) Polym. Adv. Technol., 10, pp. 3-12 Harada, A., Supramolecular assemblies through macromolecular recognition by cyclodextrins (1996) Supramol. Sci., 3, pp. 19-23 Ceccato, M., Lonostro, P., Baglioni, P., α-cyclodextrin/polyethylene glycol polyrotaxane: A study of the threading process (1997) Langmuir, 13, pp. 2436-2439 Sabadini, E., Cosgrove, T., Taweepreda, W., Complexation between α-cyclodextrin and poly(ethylene oxide) physically adsorbed on the surface of colloidal silica (2003) Langmuir, 19, pp. 4812-4816 Sabadini, E., Cosgrove, T., Inclusion complex formed between star-poly(ethylene glycol) and cyclodextrins (2003) Langmuir, 19, pp. 9680-9683 Dreiss, C.A., Cosgrove, T., Newby, F.N., Sabadini, E., Formation of a supramolecular gel between α-cyclodextrin and free and adsorbed PEO on the surface of colloidal silica: Effect of temperature, solvent, and particle size (2004) Langmuir, 20, pp. 9124-9129 Huh, K.M., Ooya, T., Lee, W.K., Sasaki, S., Kwon, I.C., Jeong, S.Y., Yui, N., Supramolecular-structured hydrogels showing a reversible phase transition by inclusion complexation between poly(ethylene glycol)-grafted dextran and α-cyclodextrin (2001) Macromolecules, 34, pp. 8657-8662 Li, J., Harada, A., Kamachi, M., Transition during inclusion complex formation between α-cyclodextrin and high molecular weight poly(ethylene glycol)s in aqueous solution (1994) Polym. J., 26, pp. 1019-1026 Cardoso, M.V.C., Carvalho, L.V.C., Sabadini, E., Solubility of carbohydrates in heavy water (2012) Carbohydr. Res., 353, pp. 57-61 Harada, A., Li, J., Kamachi, M., Kitagawa, Y., Katsube, Y., Structures of polyrotaxane model (1998) Carbohydr. Res., 305, pp. 127-129 Pozuelo, J., Mendicuti, F., Mattice, W.L., Inclusion complexes of chain molecules with cycloamyloses. 2. Molecular dynamics simulations of polyrotaxanes formed by poly(ethylene glycol) and α-cyclodextrins (1997) Macromolecules, 39, pp. 3385-3690 Rusa, C., Tonelli, A.E., Separation of polymers by molecular weight through inclusion compound formation with urea and α-cyclodextrin hosts (2000) Macromolecules, 33, pp. 1813-1818 Huang, L., Allen, E., Tonelli, A., Inclusion compounds formed between α-cyclodextrins and nylon 6 (1999) Polymer, 40, pp. 3211-3221 Turro, N.J., Yekta, A., Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation number of micelles (1978) J. Am. Chem. Soc., 100, pp. 5951-5952 Tait, C.N., Davies, D.M., Polypseudorotaxanes from scratch (2002) Langmuir, 18, pp. 2453-2454 Weickenmeier, M., Wenz, G., Threading of cyclodextrins onto a polyester of octanedicarboxylic acid and polyethylene glycol (1997) Macromol. Rapid Commun., 18, pp. 1109-1115 Lo Nostro, P., Giustini, L., Fratini, E., Ninham, B.W., Ridi, F., Baglioni, P., Threading, growth, and aggregation of pseudopolyrotaxanes (2008) J. Phys. Chem. B, 112, pp. 1071-1081 Bonini, M., Rossi, S., Karlsson, G., Almgren, M., Lo Nostro, P., Baglioni, P., Self-assembly of α-cyclodextrin in water. 1. Cryo-TEM and dynamic and static light scattering (2006) Langmuir, 22, pp. 1478-1484 Nelson, A., Jack, K.S., Cosgrove, T., Kozak, D., NMR solvent relaxation in studies of multicomponent polymer adsorption (2002) Langmuir, 18, pp. 2750-2755 Sierra-Martin, B., Choi, Y., Romero-Cano, M.S., Cosgrove, T., Vincent, B., Fernández-Barbero, A., Microscopic signature of a microgel volume phase transition (2005) Macromolecules, 38, pp. 10782-10787 Sabadini, E., Egídio, F.C., Fujiwara, F.Y., Use of water spin-spin relaxation rate to probe the solvation of cyclodextrin (2008) J. Phys. Chem. B, 112, pp. 3328-3332 Travelet, C., Schlatter Hébraud, P., Brochon, C., Lapp, A., Hadziioannou, G., Formation and self-organization kinetics of α-CD/PEO-based pseudopolyrotaxanes in water. A specific behavior at 30 C (2009) Langmuir, 25, pp. 8723-8743